Basavaraj Madivala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6355597/publications.pdf

Version: 2024-02-01

86 papers 2,599 citations

236925 25 h-index 197818 49 g-index

86 all docs

86 docs citations

86 times ranked 2702 citing authors

#	Article	IF	CITATIONS
1	Exploiting particle shape in solid stabilized emulsions. Soft Matter, 2009, 5, 1717.	2.7	375
2	Self-Assembly and Rheology of Ellipsoidal Particles at Interfaces. Langmuir, 2009, 25, 2718-2728.	3.5	298
3	Shape anisotropic colloids: synthesis, packing behavior, evaporation driven assembly, and their application in emulsion stabilization. Soft Matter, 2013, 9, 6711.	2.7	159
4	Packing, Flipping, and Buckling Transitions in Compressed Monolayers of Ellipsoidal Latex Particles. Langmuir, 2006, 22, 6605-6612.	3.5	156
5	Control over Coffee-Ring Formation in Evaporating Liquid Drops Containing Ellipsoids. Langmuir, 2014, 30, 8680-8686.	3.5	133
6	Stabilization of Pickering Emulsions with Oppositely Charged Latex Particles: Influence of Various Parameters and Particle Arrangement around Droplets. Langmuir, 2015, 31, 11200-11208.	3.5	80
7	Role of electrostatic interactions in the adsorption kinetics of nanoparticles at fluid–fluid interfaces. Physical Chemistry Chemical Physics, 2016, 18, 5499-5508.	2.8	67
8	A Model for the Prediction of Droplet Size in Pickering Emulsions Stabilized by Oppositely Charged Particles. Langmuir, 2014, 30, 9336-9345.	3.5	65
9	Evaporation of Sessile Drops Containing Colloidal Rods: Coffee-Ring and Order–Disorder Transition. Journal of Physical Chemistry B, 2015, 119, 3860-3867.	2.6	59
10	Spontaneous Thermoreversible Formation of Cationic Vesicles in a Protic Ionic Liquid. Journal of the American Chemical Society, 2012, 134, 20728-20732.	13.7	50
11	Synergistic stabilization of Pickering emulsions by in situ modification of kaolinite with non ionic surfactant. Applied Clay Science, 2017, 148, 68-76.	5.2	46
12	Role of particle shape anisotropy on crack formation in drying of colloidal suspension. Scientific Reports, 2016, 6, 30708.	3.3	43
13	Shape-Anisotropic Colloids at Interfaces. Langmuir, 2019, 35, 3-20.	3.5	42
14	Kinetic stability of surfactant stabilized water-in-diesel emulsion fuels. Fuel, 2019, 236, 1415-1422.	6.4	41
15	Tailoring pore distribution in polymer films <i>via</i> evaporation induced phase separation. RSC Advances, 2019, 9, 15593-15605.	3.6	37
16	Influence of pH and Salt Concentration on Pickering Emulsions Stabilized by Colloidal Peanuts. Langmuir, 2018, 34, 13312-13321.	3.5	36
17	Local liquid holdups and hysteresis in a 2-D packed bed using X-ray radiography. AICHE Journal, 2005, 51, 2178-2189.	3.6	35
18	Tailoring crack morphology in coffee-ring deposits via substrate heating. Soft Matter, 2017, 13, 5445-5452.	2.7	35

#	Article	lF	CITATIONS
19	Hetero-aggregation of oppositely charged nanoparticles. Journal of Colloid and Interface Science, 2017, 492, 92-100.	9.4	34
20	Contact angle and detachment energy of shape anisotropic particles at fluid-fluid interfaces. Journal of Colloid and Interface Science, 2016, 478, 63-71.	9.4	33
21	Patterns in Drying Drops Dictated by Curvature-Driven Particle Transport. Langmuir, 2018, 34, 11473-11483.	3.5	33
22	Unsupervised Segmentation of Cervical Cell Images Using Gaussian Mixture Model., 2016,,.		31
23	Emulsions Stabilized by Silica Rods via Arrested Demixing. Langmuir, 2015, 31, 6649-6654.	3.5	28
24	Sponge-to-Lamellar Transition in a Double-Tail Cationic Surfactant/Protic Ionic Liquid System: Structural and Rheological Analysis. Journal of Physical Chemistry B, 2012, 116, 813-822.	2.6	27
25	Loosely packed monolayer coffee stains in dried drops of soft colloids. Nanoscale, 2017, 9, 18798-18803.	5.6	27
26	Aggregation and Stabilization of Colloidal Spheroids by Oppositely Charged Spherical Nanoparticles. Langmuir, 2018, 34, 6511-6521.	3.5	27
27	Visualization of the equilibrium position of colloidal particles at fluid–water interfaces by deposition of nanoparticles. Nanoscale, 2015, 7, 13868-13876.	5.6	24
28	Doubly pH Responsive Emulsions by Exploiting Aggregation of Oppositely Charged Nanoparticles and Polyelectrolytes. Langmuir, 2018, 34, 5060-5071.	3.5	23
29	Nano ellipsoids at the fluid–fluid interface: effect of surface charge on adsorption, buckling and emulsification. Faraday Discussions, 2016, 186, 419-434.	3.2	22
30	Robust Method to Determine Critical Micelle Concentration via Spreading Oil Drops on Surfactant Solutions. Langmuir, 2020, 36, 8100-8110.	3.5	22
31	Pickering emulsions stabilized by oppositely charged colloids: Stability and pattern formation. Physical Review E, 2015, 92, 052314.	2.1	21
32	Viscoelastic Particle–Laden Interface Inhibits Coffee-Ring Formation. Langmuir, 2018, 34, 14294-14301.	3.5	21
33	Spray drying of colloidal dispersions containing ellipsoids. Journal of Colloid and Interface Science, 2019, 551, 242-250.	9.4	20
34	Beyond Coffee Rings: Drying Drops of Colloidal Dispersions on Inclined Substrates. ACS Omega, 2020, 5, 11262-11270.	3.5	20
35	Self-assembly of nano-ellipsoids into ordered structures via vertical deposition. RSC Advances, 2015, 5, 60079-60084.	3.6	19
36	Synthesis of non-spherical patchy particles at fluid–fluid interfaces via differential deformation and their self-assembly. Soft Matter, 2016, 12, 5950-5958.	2.7	19

3

#	Article	lF	Citations
37	General destabilization mechanism of pH-responsive Pickering emulsions. Physical Chemistry Chemical Physics, 2017, 19, 30790-30797.	2.8	19
38	Porous Ceramics via Processable Pickering Emulsion Stabilized by Oppositely Charged Colloids. Langmuir, 2020, 36, 11645-11654.	3.5	19
39	Shape-Induced Deformation, Capillary Bridging, and Self-Assembly of Cuboids at the Fluid–Fluid Interface. Langmuir, 2017, 33, 791-801.	3.5	18
40	Magnetic-field-driven crack formation in an evaporated anisotropic colloidal assembly. Physical Review E, 2016, 94, 012618.	2.1	17
41	Conversion of expanded polystyrene waste to nanoparticles via nanoprecipitation. Journal of Applied Polymer Science, 2016, 133, .	2.6	16
42	Modulation of Central Depletion Zone in Evaporated Sessile Drops via Substrate Heating. Langmuir, 2020, 36, 4737-4744.	3.5	16
43	On the origin and evolution of the depletion zone in coffee stains. Soft Matter, 2019, 15, 4170-4177.	2.7	15
44	Nanovesicle formation and microstructure in aqueous ditallowethylesterdimethylammonium chloride (DEEDMAC) solutions. Journal of Colloid and Interface Science, 2014, 429, 17-24.	9.4	14
45	Synthesis of Single and Multipatch Particles by Dip-Coating Method and Self-Assembly Thereof. Langmuir, 2015, 31, 1255-1261.	3.5	14
46	Cracks in dried deposits of hematite ellipsoids: Interplay between magnetic and hydrodynamic torques. Journal of Colloid and Interface Science, 2018, 510, 172-180.	9.4	14
47	Diesel Emulsion Fuels with Ultralong Stability. Energy & Energy & 2019, 33, 12227-12235.	5.1	13
48	Influence of the drying configuration on the patterning of ellipsoids – concentric rings and concentric cracks. Physical Chemistry Chemical Physics, 2019, 21, 20045-20054.	2.8	12
49	Orientation, elastic interaction and magnetic response of asymmetric colloids in a nematic liquid crystal. Scientific Reports, 2019, 9, 81.	3.3	11
50	Patterns from drops drying on inclined substrates. Soft Matter, 2021, 17, 7670-7681.	2.7	11
51	Phase Inversion of Ellipsoid-Stabilized Emulsions. Langmuir, 2021, 37, 7295-7304.	3.5	11
52	Rheology and microstructure of concentrated microcrystalline cellulose (MCC)/1-allyl-3-methylimidazolium chloride (AmimCl)/water mixtures. Soft Matter, 2018, 14, 7615-7624.	2.7	10
53	Evaporative self-assembly of the binary mixture of soft colloids. Physical Chemistry Chemical Physics, 2021, 23, 7115-7124.	2.8	10
54	Synergy between the crack pattern and substrate elasticity in colloidal deposits. Physical Review E, 2021, 103, 032602.	2.1	10

#	Article	IF	Citations
55	Desiccation cracks in dispersion of ellipsoids: Effect of aspect ratio and applied fields. Physical Review Materials, 2018, 2, .	2.4	10
56	Patterning of colloids into spirals via confined drying. Soft Matter, 2020, 16, 3753-3761.	2.7	9
57	Self assembly of oppositely charged latex particles at oil-water interface. Journal of Colloid and Interface Science, 2017, 486, 325-336.	9.4	8
58	Porous materials from oppositely charged nanoparticle gel emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 544, 172-178.	4.7	8
59	Engineering polymer film porosity for solvent triggered actuation. Soft Matter, 2021, 17, 2900-2912.	2.7	8
60	Macroporous Ceramic Monolith from Nanoparticle–Polyelectrolyte-Stabilized Pickering Emulsions. Journal of Physical Chemistry B, 2021, 125, 13575-13584.	2.6	8
61	Nanoindentation of clay colloidosomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550, 167-175.	4.7	6
62	Colloidal monolayers with cell-like tessellations via interface assisted evaporative assembly. Journal of Colloid and Interface Science, 2021, 583, 683-691.	9.4	6
63	Evaporative self-assembly of soft colloidal monolayers: the role of particle softness. Soft Matter, 2021, 17, 7921-7931.	2.7	6
64	Further Insights into Patterns from Drying Particle Laden Sessile Drops. Langmuir, 2021, 37, 4395-4402.	3.5	6
65	Particle size and substrate wettability dependent patterns in dried pendant drops. Journal of Physics Condensed Matter, 2021, 33, 024003.	1.8	6
66	Pickering emulsions stabilized by sphere-spheroid mixtures. Journal of Dispersion Science and Technology, 2021, 42, 2022-2031.	2.4	5
67	Drops spreading on fluid surfaces: Transition from Laplace to Marangoni regime. Physical Review Fluids, 2021, 6, .	2.5	5
68	Flow Alignment of Prolate Particles on a Rotating Disk Electrode. Journal of the Electrochemical Society, 2006, 153, C660.	2.9	4
69	Controlling the yield behavior of fat-oil mixtures using cooling rate. Rheologica Acta, 2017, 56, 971-982.	2.4	4
70	A versatile major axis voted method for efficient ellipse detection. Pattern Recognition Letters, 2018, 104, 45-52.	4.2	4
71	Ice templated nanocomposites containing rod-like hematite particles: Interplay between particle anisotropy and particle–matrix interactions. Journal of Applied Physics, 2020, 128, 034702.	2.5	4
72	Controlling the microstructure of emulsions by exploiting particle-polyelectrolyte association. Journal of Colloid and Interface Science, 2021, 597, 409-421.	9.4	4

#	Article	IF	Citations
73	Statics and dynamics of drops spreading on a liquid-liquid interface. Physical Review Fluids, 2020, 5, .	2.5	4
74	Formation and suppression of secondary cracks in deposits of colloidal ellipsoids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128579.	4.7	4
75	Semi-batch and continuous production of Pickering emulsion <i>via</i> direct contact steam condensation. Soft Matter, 2021, 17, 9636-9643.	2.7	3
76	Jamming of Nano-Ellipsoids in a Microsphere: A Quantitative Analysis of Packing Fraction by Small-Angle Scattering. Langmuir, 2022, 38, 3832-3843.	3.5	3
77	Exploiting Heteroaggregation to Quantify the Contact Angle of Charged Colloids at Interfaces. Langmuir, 2022, 38, 7433-7441.	3.5	3
78	MEASUREMENT OF AXIAL DISPERSION COEFFICIENT IN A PACKED BED USING X-RAY. Materials and Manufacturing Processes, 2002, 17, 683-692.	4.7	2
79	Phase Behavior and Microâ€Structure of Fat–Oil Mixtures: Engineering the Shape of Fat Clusters. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 121-132.	1.9	2
80	Reply to "Comment on  Patterns in Drying Drops Dictated by Curvature-Driven Particle Transport'― Langmuir, 2019, 35, 9991-9993.	3.5	2
81	Colloidal Particle-Induced Microstructural Transition in Cellulose/Ionic Liquid/Water Mixtures. Langmuir, 2019, 35, 12428-12438.	3.5	2
82	An experimental and theoretical study of the inward particle drift in contact line deposits. Soft Matter, 2022, 18, 2414-2421.	2.7	2
83	Effect of the Shape of the Confining Boundary and Particle Shape Anisotropy on the Morphology of Desiccation Cracks. Langmuir, 2022, 38, 7906-7913.	3.5	2
84	Confinement effect on spatio-temporal growth of spherulites from cellulose/ionic liquid solutions. Polymer, 2019, 185, 121927.	3.8	1
85	Self-Assembly and Surface Rheology of 2D Suspension of Ellipsoids. AIP Conference Proceedings, 2008,	0.4	0
86	Order-to-disorder transition in colored microgel monolayers. AIP Conference Proceedings, 2019, , .	0.4	0