
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6355569/publications.pdf Version: 2024-02-01

SHIIIAN YANG

#	Article	IF	CITATIONS
1	Outstanding performance of sulfurated titanomaghemite (Fe2TiO5) for hexavalent chromium removal: Sulfuration promotion mechanism and its application in chromium resource recovery. Chemosphere, 2022, 287, 132360.	8.2	10
2	Resource utilization of natural pyrite (FeS2) as the tailings after flotation of natural sphalerite (ZnS) for reclaiming high concentrations of gaseous Hg0 from Zn smelting flue gas. Chemical Engineering Journal, 2022, 427, 131644.	12.7	15
3	Novel Counteraction Effect of H ₂ O and SO ₂ toward HCl on the Chemical Adsorption of Gaseous Hg ^O onto Sulfureted HPW/Î ³ -Fe ₂ O ₃ at Low Temperatures: Mechanism and Its Application in Hg ^O Recovery from Coal-Fired Flue Gas. Environmental Science & amp: Technology, 2022, 56, 642-651.	10.0	14
4	Comparison of pyrite-phase transition metal sulfides for capturing leaked high concentrations of gaseous elemental mercury in indoor air: Mechanism and adsorption/desorption kinetics. Journal of Colloid and Interface Science, 2022, 622, 431-442.	9.4	7
5	Simultaneous Adsorption of Gaseous Hg ⁰ and Hg(II) by Regenerable Monolithic FeMoS _{<i>x</i>} /TiO ₂ : Mechanism and its Application in the Centralized Control of Hg Pollution in Coal-Fired Flue Gas. Environmental Science & amp; Technology, 2022, 56, 10977-10986.	10.0	9
6	Selective removal of Hg2+ from acidic wastewaters using sulfureted Fe2TiO5: Underlying mechanism and its application as a regenerable sorbent for recovering Hg from waste acids of smelters. Water Research, 2022, 221, 118796.	11.3	11
7	Photo-assisted separation of noble-metal-free oxidation and reduction cocatalysts for graphitic carbon nitride nanosheets with efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 280, 119456.	20.2	91
8	Adjustment of operation temperature window of Mn-Ce oxide catalyst for the selective catalytic reduction of NO with NH3. Journal of Hazardous Materials, 2021, 405, 124223.	12.4	55
9	Remarkable differences between copper-based sulfides and iron-based sulfides for the adsorption of high concentrations of gaseous elemental mercury: Mechanisms, kinetics, and significance. Journal of Colloid and Interface Science, 2021, 582, 581-590.	9.4	18
10	Safe disposal of deactivated commercial selective catalytic reduction catalyst (V2O5-MoO3/TiO2) as a low-cost and regenerable sorbent to recover gaseous elemental mercury in smelting flue gas. Journal of Hazardous Materials, 2021, 406, 124744.	12.4	13
11	Outstanding performance of CuO/Fe–Ti spinel for Hg ^O oxidation as a co-benefit of NO abatement: significant promotion of Hg ^O oxidation by CuO loading. Catalysis Science and Technology, 2021, 11, 2316-2326.	4.1	10
12	Outstanding performance of ZnS/TiO2 for the urgent disposal of liquid mercury leakage indoors: Novel support effect, reaction mechanism and kinetics. Journal of Hazardous Materials, 2021, 403, 123867.	12.4	16
13	Recovering gaseous HgO using sulfureted phosphotungstic acid modified Î ³ -Fe2O3 from power plants burning Hg-rich coal for centralized control. Journal of Hazardous Materials, 2021, 407, 124381.	12.4	29
14	Faster electron injection and higher interface reactivity in g-C3N4/Fe2O3 nanohybrid for efficient photo-Fenton-like activity toward antibiotics degradation. Environmental Research, 2021, 195, 110842.	7.5	34
15	Different Design Strategies for Metal Sulfide Sorbents to Capture Low Concentrations of Gaseous Hg ⁰ in Coal-Fired Flue Gas and High Concentrations of Gaseous Hg ⁰ in Smelting Flue Gas. Environmental Science & Technology, 2021, 55, 7094-7101.	10.0	10
16	Novel Promotion of Sulfuration for Hg ⁰ Conversion over V ₂ O ₅ –MoO ₃ /TiO ₂ with HCl at Low Temperatures: Hg ⁰ Adsorption, Hg ⁰ Oxidation, and Hg ²⁺ Adsorption. Environmental Science & amp; Technology, 2021, 55, 7072-7081.	10.0	31
17	Novel Synergistic Effect of Fe and Mo in FeMoS <i>_x</i> /TiO ₂ for Recovering High Concentrations of Gaseous Hg ⁰ from Smelting Flue Gas: Reaction Mechanism and Kinetics. Environmental Science & Technology, 2020, 54, 586-594.	10.0	42
18	Remarkable improvement of Ti incorporation on Hg0 capture from smelting flue gas by sulfurated γ-Fe2O3: Performance and mechanism. Journal of Hazardous Materials, 2020, 381, 120967.	12.4	54

#	Article	IF	CITATIONS
19	CeO2 grafted with different heteropoly acids for selective catalytic reduction of NO with NH3. Journal of Hazardous Materials, 2020, 382, 121032.	12.4	47
20	Mechanism of Elemental Mercury Oxidation over Copper-Based Oxide Catalysts: Kinetics and Transient Reaction Studies. Industrial & Engineering Chemistry Research, 2020, 59, 61-70.	3.7	24
21	Significant Enhancement of Gaseous Elemental Mercury Recovery from Coal-Fired Flue Gas by Phosphomolybdic Acid Grafting on Sulfurated γ-Fe ₂ O ₃ : Performance and Mechanism. Environmental Science & Technology, 2020, 54, 1992-2001.	10.0	43
22	Outstanding Performance of Magnetically Separable Sulfureted MoO ₃ /Fe–Ti Spinel for Gaseous Hg ⁰ Recovery from Smelting Flue Gas: Mechanism and Adsorption Kinetics. Environmental Science & Technology, 2020, 54, 7659-7668.	10.0	28
23	Acceleration of Hg ⁰ Adsorption onto Natural Sphalerite by Cu ²⁺ Activation during Flotation: Mechanism and Applications in Hg ⁰ Recovery. Environmental Science & Technology, 2020, 54, 7687-7696.	10.0	35
24	Novel Synergetic Effect of Fe and W in FeWS _{<i>x</i>} /TiO ₂ on Capturing High Concentrations of Gaseous Hg ⁰ from Smelting Flue Gas: Adsorption Kinetics and Structure–Activity Relationship. Industrial & Engineering Chemistry Research, 2020, 59, 2745-2753.	3.7	34
25	Synergistic effect and mechanism of catalytic degradation toward antibiotic contaminants by amorphous goethite nanoparticles decorated graphitic carbon nitride. Chemical Engineering Journal, 2020, 390, 124551.	12.7	45
26	The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance. Chemical Engineering Journal, 2020, 387, 124090.	12.7	124
27	Balance between Reducibility and N ₂ O Adsorption Capacity for the N ₂ O Decomposition: Cu _{<i>x</i>} Co _{<i>y</i>} Catalysts as an Example. Environmental Science & Technology, 2019, 53, 10379-10386.	10.0	36
28	Controllable fabrication of a red phosphorus modified g-C3N4 photocatalyst with strong interfacial binding for the efficient removal of organic pollutants. Journal of Alloys and Compounds, 2019, 810, 151885.	5.5	29
29	Outstanding Performance of Recyclable Amorphous MoS ₃ Supported on TiO ₂ for Capturing High Concentrations of Gaseous Elemental Mercury: Mechanism, Kinetics, and Application. Environmental Science & Technology, 2019, 53, 4480-4489.	10.0	92
30	Influence mechanism of the compositions in coal-fired flue gas on HgO oxidation over commercial SCR catalyst. Journal of Industrial and Engineering Chemistry, 2019, 75, 130-137.	5.8	27
31	Costâ€Efficient Graphitic Carbon Nitride as an Effective Photocatalyst for Antibiotic Degradation: An Insight into the Effects of Different Precursors and Coexisting Ions, and Photocatalytic Mechanism. Chemistry - an Asian Journal, 2019, 14, 162-169.	3.3	23
32	The promotion effect of ceria on high vanadia loading NH3-SCR catalysts. Catalysis Communications, 2019, 121, 84-88.	3.3	16
33	H ₃ PW ₁₂ O ₄₀ Grafted on CeO ₂ : A High-Performance Catalyst for the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . Industrial & Engineering Chemistry Research, 2018, 57, 856-866.	3.7	44
34	Promotion of H ₃ PW ₁₂ O ₄₀ Grafting on NO _{<i>x</i>} Abatement over γ-Fe ₂ O ₃ : Performance and Reaction Mechanism. Industrial & Engineering Chemistry Research, 2018, 57, 13661-13670.	3.7	22
35	W-Modified Mn–Ti Mixed Oxide Catalyst for the Selective Catalytic Reduction of NO with NH ₃ . Industrial & Engineering Chemistry Research, 2018, 57, 9112-9119.	3.7	23
36	Outstanding Resistance of H ₂ S-Modified Cu/TiO ₂ to SO ₂ for Capturing Gaseous Hg ⁰ from Nonferrous Metal Smelting Flue Gas: Performance and Reaction Mechanism. Environmental Science & Technology, 2018, 52, 10003-10010.	10.0	84

#	Article	IF	CITATIONS
37	H ₂ S-Modified Fe–Ti Spinel: A Recyclable Magnetic Sorbent for Recovering Gaseous Elemental Mercury from Flue Gas as a Co-Benefit of Wet Electrostatic Precipitators. Environmental Science & Technology, 2017, 51, 3426-3434.	10.0	109
38	Promotional Effects of Ti on a CeO ₂ –MoO ₃ Catalyst for the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . ACS Applied Materials & Interfaces, 2017, 9, 16951-16958.	8.0	78
39	Elemental Mercury Oxidation over Fe–Ti–Mn Spinel: Performance, Mechanism, and Reaction Kinetics. Environmental Science & Technology, 2017, 51, 531-539.	10.0	46
40	<i>In Situ</i> Emergency Disposal of Liquid Mercury Leakage by Fe-Containing Sphalerite: Performance and Reaction Mechanism. Industrial & amp; Engineering Chemistry Research, 2017, 56, 153-160.	3.7	28
41	H ₂ S-Modified Natural Ilmenite: A Recyclable Magnetic Sorbent for Recovering Gaseous Elemental Mercury from Flue Gas. Industrial & Engineering Chemistry Research, 2017, 56, 10060-10068.	3.7	29
42	Alkali Metal Deactivation on the Low Temperature Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ over MnO _{<i>x</i>} -CeO ₂ : A Mechanism Study. Journal of Physical Chemistry C, 2016, 120, 15299-15309.	3.1	44
43	The simultaneous centralized control of elemental mercury emission and deep desulfurization from the flue gas using magnetic Mn–Fe spinel as a co-benefit of the wet electrostatic precipitator. Fuel Processing Technology, 2016, 142, 345-351.	7.2	50
44	Why the Low-Temperature Selective Catalytic Reduction Performance of Cr/TiO ₂ Is Much Less than That of Mn/TiO ₂ : A Mechanism Study. Journal of Physical Chemistry C, 2016, 120, 23511-23522.	3.1	16
45	Role of WO3 in NO Reduction with NH3 over V2O5-WO3/TiO2: A New Insight from the Kinetic Study. Catalysis Letters, 2016, 146, 2242-2251.	2.6	20
46	Recyclable Naturally Derived Magnetic Pyrrhotite for Elemental Mercury Recovery from Flue Gas. Environmental Science & Technology, 2016, 50, 10562-10569.	10.0	140
47	The effect of Ce on a high-efficiency CeO ₂ /WO ₃ –TiO ₂ catalyst for the selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2016, 6, 64803-64810.	3.6	21
48	Effect of CeO ₂ for a high-efficiency CeO ₂ /WO ₃ –TiO ₂ catalyst on N ₂ O formation in NH ₃ -SCR: a kinetic study. Catalysis Science and Technology, 2016, 6, 3149-3155.	4.1	36
49	Effect of H ₂ O and SO ₂ on the Selective Catalytic Reduction of NO with NH ₃ Over Ce/TiO ₂ Catalyst: Mechanism and Kinetic Study. Journal of Physical Chemistry C, 2016, 120, 1066-1076.	3.1	70
50	MnO supported on Fe–Ti spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity. Applied Catalysis B: Environmental, 2016, 181, 570-580.	20.2	199
51	A highly efficient CeWO _x catalyst for the selective catalytic reduction of NO _x with NH ₃ . Catalysis Science and Technology, 2016, 6, 1195-1200.	4.1	63
52	Novel Effect of H ₂ O on the Low Temperature Selective Catalytic Reduction of NO with NH ₃ over MnO _{<i>x</i>} —CeO ₂ : Mechanism and Kinetic Study. Journal of Physical Chemistry C, 2015, 119, 4180-4187.	3.1	68
53	The mechanism of the effect of H ₂ O on the low temperature selective catalytic reduction of NO with NH ₃ over Mn–Fe spinel. Catalysis Science and Technology, 2015, 5, 2132-2140.	4.1	84
54	A novel dual layer SCR catalyst with a broad temperature window for the control of NO emission from diesel bus. Catalysis Communications, 2015, 65, 108-112.	3.3	10

#	Article	IF	CITATIONS
55	Promotion mechanism of CeO ₂ addition on the low temperature SCR reaction over MnO _x /TiO ₂ : a new insight from the kinetic study. RSC Advances, 2015, 5, 27785-27793.	3.6	22
56	The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe–Ti–Mn spinel. Journal of Hazardous Materials, 2015, 299, 740-746.	12.4	63
57	Global Kinetic Study of NO Reduction by NH ₃ over V ₂ O ₅ –WO ₃ /TiO ₂ : Relationship between the SCR Performance and the Key Factors. Industrial & Engineering Chemistry Research, 2015, 54, 11011-11023.	3.7	82
58	The co-benefit of elemental mercury oxidation and slip ammonia abatement with SCR-Plus catalysts. Fuel, 2014, 133, 263-269.	6.4	51
59	Effect of Sulfation on the Selective Catalytic Reduction of NO with NH3 Over γ-Fe2O3. Catalysis Letters, 2014, 144, 578-584.	2.6	31
60	Novel approach for a cerium-based highly-efficient catalyst with excellent NH ₃ -SCR performance. Catalysis Science and Technology, 2014, 4, 3611-3614.	4.1	33
61	Competition of selective catalytic reduction and non selective catalytic reduction over MnO _x /TiO ₂ for NO removal: the relationship between gaseous NO concentration and N ₂ O selectivity. Catalysis Science and Technology, 2014, 4, 224-232.	4.1	76
62	Dual Effect of Sulfation on the Selective Catalytic Reduction of NO with NH ₃ over MnO _{<i>x</i>} /TiO ₂ : Key Factor of NH ₃ Distribution. Industrial & Engineering Chemistry Research, 2014, 53, 5810-5819.	3.7	36
63	N ₂ Selectivity of NO Reduction by NH ₃ over MnO _{<i>x</i>} –CeO ₂ : Mechanism and Key Factors. Journal of Physical Chemistry C, 2014, 118, 21500-21508.	3.1	92
64	Mechanism of N ₂ O Formation during the Low-Temperature Selective Catalytic Reduction of NO with NH ₃ over Mn–Fe Spinel. Environmental Science & Technology, 2014, 48, 10354-10362.	10.0	225
65	CO2 adsorption performance of ZIF-7 and its endurance in flue gas components. Frontiers of Environmental Science and Engineering, 2014, 8, 162-168.	6.0	23
66	Removal of elemental mercury with Mn/Mo/Ru/Al2O3 membrane catalytic system. Frontiers of Environmental Science and Engineering, 2013, 7, 464-473.	6.0	3
67	Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: Acidity, surface species and catalytic activity. Chemical Engineering Journal, 2013, 225, 520-527.	12.7	177
68	Novel regenerable sorbent based on Zr–Mn binary metal oxides for flue gas mercury retention and recovery. Journal of Hazardous Materials, 2013, 261, 206-213.	12.4	97
69	Improvement of the Activity of γ-Fe ₂ O ₃ for the Selective Catalytic Reduction of NO with NH ₃ at High Temperatures: NO Reduction versus NH ₃ Oxidization. Industrial & Engineering Chemistry Research, 2013, 52, 5601-5610.	3.7	118
70	Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance. Applied Catalysis B: Environmental, 2013, 136-137, 19-28.	20.2	312
71	Comparison on the Performance of α-Fe2O3 and γ-Fe2O3 for Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. Catalysis Letters, 2013, 143, 697-704.	2.6	101
72	Substitution of WO ₃ in V ₂ O ₅ /WO ₃ –TiO ₂ by Fe ₂ O ₃ for selective catalytic reduction of NO with NH3. Catalysis Science and Technology, 2013, 3, 161-168.	4.1	90

#	Article	IF	CITATIONS
73	Synthesis and characterization of nano-sized Mn–TiO2 catalysts and their application to removal of gaseous elemental mercury. Research on Chemical Intermediates, 2012, 38, 2511-2522.	2.7	25
74	A novel magnetic Fe–Ti–V spinel catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range. Catalysis Science and Technology, 2012, 2, 915.	4.1	53
75	Fe–Ti spinel for the selective catalytic reduction of NO with NH3: Mechanism and structure–activity relationship. Applied Catalysis B: Environmental, 2012, 117-118, 73-80.	20.2	178
76	Significance of RuO ₂ Modified SCR Catalyst for Elemental Mercury Oxidation in Coal-fired Flue Gas. Environmental Science & Technology, 2011, 45, 5725-5730.	10.0	126
77	Nanosized Cation-Deficient Feâ^'Ti Spinel: A Novel Magnetic Sorbent for Elemental Mercury Capture from Flue Gas. ACS Applied Materials & Interfaces, 2011, 3, 209-217.	8.0	137
78	Gaseous Elemental Mercury Capture from Flue Gas Using Magnetic Nanosized (Fe _{3-<i>x</i>} Mn _{<i>x</i>}) _{1-î} O ₄ . Environmental Science & Technology, 2011, 45, 1540-1546.	10.0	161
79	Elemental Mercury Capture from Flue Gas by Magnetic Mn–Fe Spinel: Effect of Chemical Heterogeneity. Industrial & Engineering Chemistry Research, 2011, 50, 9650-9656.	3.7	111
80	Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study. Applied Catalysis B: Environmental, 2011, 110, 71-80.	20.2	429
81	Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn–Fe spinel for elemental mercury capture. Applied Catalysis B: Environmental, 2011, 101, 698-708.	20.2	167
82	Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/l³-Fe2O3 at lower temperatures. Journal of Hazardous Materials, 2011, 186, 508-515.	12.4	206
83	Catalytic Oxidation of Elemental Mercury over the Modified Catalyst Mn/α-Al ₂ O ₃ at Lower Temperatures. Environmental Science & Technology, 2010, 44, 426-431.	10.0	205
84	A novel multi-functional magnetic Fe–Ti–V spinel catalyst for elemental mercury capture and callback from flue gas. Chemical Communications, 2010, 46, 8377.	4.1	56
85	Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3â^'xTixO4 (0≤â‰ੳ.78) at neutral pH values. Applied Catalysis B: Environmental, 2009, 89, 527-535.	20.2	170
86	Degradation of Methylene Blue by Heterogeneous Fenton Reaction Using Titanomagnetite at Neutral pH Values: Process and Affecting Factors. Industrial & Engineering Chemistry Research, 2009, 48, 9915-9921.	3.7	57
87	Quantification of crop residue burning in the field and its influence on ambient air quality in Suqian, China. Atmospheric Environment, 2008, 42, 1961-1969.	4.1	135