Helena Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6355293/publications.pdf Version: 2024-02-01

HELENA OLIVEIDA

#	Article	IF	CITATIONS
1	Olive Oils from Fruits Infected with Different Anthracnose Pathogens Show Sensory Defects Earlier Than Chemical Degradation. Agronomy, 2021, 11, 1041.	3.0	14
2	White Rot Fungi (Hymenochaetales) and Esca of Grapevine: Insights from Recent Microbiome Studies. Journal of Fungi (Basel, Switzerland), 2021, 7, 770.	3.5	19
3	Pathological, Morphological, Cytogenomic, Biochemical and Molecular Data Support the Distinction between Colletotrichum cigarro comb. et stat. nov. and Colletotrichum kahawae. Plants, 2020, 9, 502.	3.5	21
4	Characterization of the Wood Mycobiome of Vitis vinifera in a Vineyard Affected by Esca. Spatial Distribution of Fungal Communities and Their Putative Relation With Leaf Symptoms. Frontiers in Plant Science, 2019, 10, 910.	3.6	66
5	Fungicides and the Grapevine Wood Mycobiome: A Case Study on Tracheomycotic Ascomycete Phaeomoniella chlamydospora Reveals Potential for Two Novel Control Strategies. Frontiers in Plant Science, 2019, 10, 1405.	3.6	18
6	Epicoccum layuense a potential biological control agent of esca-associated fungi in grapevine. PLoS ONE, 2019, 14, e0213273.	2.5	47
7	Olive anthracnose: a yield―and oil qualityâ€degrading disease caused by several species of <i>Colletotrichum</i> that differ in virulence, host preference and geographical distribution. Molecular Plant Pathology, 2018, 19, 1797-1807.	4.2	48
8	A first insight into the involvement of phytohormones pathways in coffee resistance and susceptibility to Colletotrichum kahawae. PLoS ONE, 2017, 12, e0178159.	2.5	30
9	Characterization of Colletotrichum gloeosporioides, as the main causal agent of citrus anthracnose, and C. karstii as species preferentially associated with lemon twig dieback in Portugal. Phytoparasitica, 2016, 44, 549-561.	1.2	34
10	Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Spain, with description of Cylindrodendrum alicantinum sp. nov European Journal of Plant Pathology, 2016, 145, 103-118.	1.7	18
11	Comparative Validation of Conventional and RNA-Seq Data-Derived Reference Genes for qPCR Expression Studies of Colletotrichum kahawae. PLoS ONE, 2016, 11, e0150651.	2.5	14
12	Virulence diversity of anthracnose pathogens (Colletotrichum acutatum and C. gloeosporioides) Tj ETQq0 0 0 rg Pathology, 2015, 142, 73-83.	gBT /Overlo 1.7	ock 10 Tf 50 3 38
13	Multi-gene analysis and morphology reveal novel llyonectria species associated with black foot disease of grapevines. Fungal Biology, 2012, 116, 62-80.	2.5	106
14	Molecular epidemiology of Ralstonia solanacearum strains from plants and environmental sources in Portugal. European Journal of Plant Pathology, 2012, 133, 687-706.	1.7	10
15	Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycological Progress, 2012, 11, 655-688.	1.4	176
16	The distinctive population structure ofColletotrichumspecies associated with olive anthracnose in the Algarve region of Portugal reflects a host–pathogen diversity hot spot. FEMS Microbiology Letters, 2009, 296, 31-38.	1.8	42
17	Agrobacterium-Mediated Transformation and Insertional Mutagenesis in Colletotrichum acutatum for Investigating Varied Pathogenicity Lifestyles. Molecular Biotechnology, 2008, 39, 57-67.	2.4	53
18	Neonectria liriodendri sp. nov., the main causal agent of black foot disease of grapevines. Studies in Mycology, 2006, 55, 227-234.	7.2	65

#	Article	IF	CITATIONS
19	Molecular and Phenotypic Analyses Reveal Association of Diverse Colletotrichum acutatum Groups and a Low Level of C. gloeosporioides with Olive Anthracnose. Applied and Environmental Microbiology, 2005, 71, 2987-2998.	3.1	156
20	Genetic and Morphological Characterization of Colletotrichum acutatum Causing Anthracnose of Lupins. Phytopathology, 2002, 92, 986-996.	2.2	125