Helena Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6355293/publications.pdf Version: 2024-02-01

HELENIA OLIVEIDA

#	Article	IF	CITATIONS
1	Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycological Progress, 2012, 11, 655-688.	1.4	176
2	Molecular and Phenotypic Analyses Reveal Association of Diverse Colletotrichum acutatum Groups and a Low Level of C. gloeosporioides with Olive Anthracnose. Applied and Environmental Microbiology, 2005, 71, 2987-2998.	3.1	156
3	Genetic and Morphological Characterization of Colletotrichum acutatum Causing Anthracnose of Lupins. Phytopathology, 2002, 92, 986-996.	2.2	125
4	Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 2012, 116, 62-80.	2.5	106
5	Characterization of the Wood Mycobiome of Vitis vinifera in a Vineyard Affected by Esca. Spatial Distribution of Fungal Communities and Their Putative Relation With Leaf Symptoms. Frontiers in Plant Science, 2019, 10, 910.	3.6	66
6	Neonectria liriodendri sp. nov., the main causal agent of black foot disease of grapevines. Studies in Mycology, 2006, 55, 227-234.	7.2	65
7	Agrobacterium-Mediated Transformation and Insertional Mutagenesis in Colletotrichum acutatum for Investigating Varied Pathogenicity Lifestyles. Molecular Biotechnology, 2008, 39, 57-67.	2.4	53
8	Olive anthracnose: a yield―and oil qualityâ€degrading disease caused by several species of <i>Colletotrichum</i> that differ in virulence, host preference and geographical distribution. Molecular Plant Pathology, 2018, 19, 1797-1807.	4.2	48
9	Epicoccum layuense a potential biological control agent of esca-associated fungi in grapevine. PLoS ONE, 2019, 14, e0213273.	2.5	47
10	The distinctive population structure ofColletotrichumspecies associated with olive anthracnose in the Algarve region of Portugal reflects a host–pathogen diversity hot spot. FEMS Microbiology Letters, 2009, 296, 31-38.	1.8	42
11	Virulence diversity of anthracnose pathogens (Colletotrichum acutatum and C. gloeosporioides) Tj ETQq1 1 0.784 Pathology, 2015, 142, 73-83.	314 rgBT / 1.7	Overlock 1 38
12	Characterization of Colletotrichum gloeosporioides, as the main causal agent of citrus anthracnose, and C. karstii as species preferentially associated with lemon twig dieback in Portugal. Phytoparasitica, 2016, 44, 549-561.	1.2	34
13	A first insight into the involvement of phytohormones pathways in coffee resistance and susceptibility to Colletotrichum kahawae. PLoS ONE, 2017, 12, e0178159.	2.5	30
14	Pathological, Morphological, Cytogenomic, Biochemical and Molecular Data Support the Distinction between Colletotrichum cigarro comb. et stat. nov. and Colletotrichum kahawae. Plants, 2020, 9, 502.	3.5	21
15	White Rot Fungi (Hymenochaetales) and Esca of Grapevine: Insights from Recent Microbiome Studies. Journal of Fungi (Basel, Switzerland), 2021, 7, 770.	3.5	19
16	Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Spain, with description of Cylindrodendrum alicantinum sp. nov European Journal of Plant Pathology, 2016, 145, 103-118.	1.7	18
17	Fungicides and the Grapevine Wood Mycobiome: A Case Study on Tracheomycotic Ascomycete Phaeomoniella chlamydospora Reveals Potential for Two Novel Control Strategies. Frontiers in Plant Science, 2019, 10, 1405.	3.6	18
18	Olive Oils from Fruits Infected with Different Anthracnose Pathogens Show Sensory Defects Earlier Than Chemical Degradation. Agronomy, 2021, 11, 1041.	3.0	14

#	Article	IF	CITATIONS
19	Comparative Validation of Conventional and RNA-Seq Data-Derived Reference Genes for qPCR Expression Studies of Colletotrichum kahawae. PLoS ONE, 2016, 11, e0150651.	2.5	14
20	Molecular epidemiology of Ralstonia solanacearum strains from plants and environmental sources in Portugal. European Journal of Plant Pathology, 2012, 133, 687-706.	1.7	10