Zahra Allahyari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6355278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disrupted Surfaces of Porous Membranes Reduce Nuclear YAP Localization and Enhance Adipogenesis through Morphological Changes. ACS Biomaterials Science and Engineering, 2022, 8, 1791-1798.	5.2	2
2	Engineering Cell-Substrate Interactions on Porous Membranes for Microphysiological Systems. Lab on A Chip, 2022, , .	6.0	9
3	Electroconductive scaffolds for tissue regeneration: Current opportunities, pitfalls, and potential solutions. Materials Research Bulletin, 2021, 134, 111083.	5.2	35
4	Microengineered 3D Collagen Gels with Independently Tunable Fiber Anisotropy and Directionality. Advanced Materials Technologies, 2021, 6, 2001186.	5.8	19
5	Recent Advances in Cellulose-Based Structures as the Wound-Healing Biomaterials: A Clinically Oriented Review. Applied Sciences (Switzerland), 2021, 11, 7769.	2.5	17
6	Micropatterned Poly(ethylene glycol) Islands Disrupt Endothelial Cell–Substrate Interactions Differently from Microporous Membranes. ACS Biomaterials Science and Engineering, 2020, 6, 959-968.	5.2	17
7	Robust and Gradient Thickness Porous Membranes for In Vitro Modeling of Physiological Barriers. Advanced Materials Technologies, 2020, 5, 2000474.	5.8	13
8	Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies. Scientific Reports, 2020, 10, 8312.	3.3	164
9	Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. International Journal of Biological Macromolecules, 2020, 154, 795-817.	7.5	79
10	Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications. Materials Science and Engineering C, 2020, 117, 111226.	7.3	49
11	Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coordination Chemistry Reviews, 2020, 420, 213432.	18.8	116
12	In vitro Studies of Transendothelial Migration for Biological and Drug Discovery. Frontiers in Medical Technology, 2020, 2, 600616.	2.5	19
13	Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2017, 97, 365-372.	7.5	97
14	Optimization of electrical stimulation parameters for MG-63 cell proliferation on chitosan/functionalized multiwalled carbon nanotube films. RSC Advances, 2016, 6, 109902-109915.	3.6	24