Stefano Cinti

List of Publications by Citations

Source: https://exaly.com/author-pdf/6355188/stefano-cinti-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,665 64 29 51 h-index g-index citations papers 68 3,386 5.88 7.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
64	Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. <i>ACS Sensors</i> , 2016 , 1, 1011-1019	9.2	350
63	Origami multiple paper-based electrochemical biosensors for pesticide detection. <i>Biosensors and Bioelectronics</i> , 2019 , 126, 346-354	11.8	155
62	Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 107-122	11.8	129
61	Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. <i>Mikrochimica Acta</i> , 2016 , 183, 2063-2083	5.8	129
60	Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate. <i>Analytica Chimica Acta</i> , 2016 , 919, 78-84	6.6	117
59	A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. <i>Analytica Chimica Acta</i> , 2017 , 960, 123-130	6.6	114
58	How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. <i>Analytica Chimica Acta</i> , 2017 , 959, 15-42	6.6	109
57	Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. <i>Biosensors and Bioelectronics</i> , 2017 , 93, 46-51	11.8	106
56	Screen-Printed Electrodes Modified with Carbon Nanomaterials: A Comparison among Carbon Black, Carbon Nanotubes and Graphene. <i>Electroanalysis</i> , 2015 , 27, 2230-2238	3	86
55	Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. <i>Biosensors and Bioelectronics</i> , 2020 , 156, 112033	11.8	85
54	Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. <i>Nature Protocols</i> , 2020 , 15, 3788-3816	18.8	85
53	Development of a hydrogen peroxide sensor based on screen-printed electrodes modified with inkjet-printed Prussian blue nanoparticles. <i>Sensors</i> , 2014 , 14, 14222-34	3.8	69
52	Phosphate Detection through a Cost-Effective Carbon Black Nanoparticle-Modified Screen-Printed Electrode Embedded in a Continuous Flow System. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	64
51	Preparation of paper-based devices for reagentless electrochemical (bio)sensor strips. <i>Nature Protocols</i> , 2019 , 14, 2437-2451	18.8	64
50	Effective electrochemical sensor based on screen-printed electrodes modified with a carbon black-Au nanoparticles composite. <i>Sensors and Actuators B: Chemical</i> , 2015 , 212, 536-543	8.5	61
49	Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. <i>Talanta</i> , 2018 , 179, 186-192	6.2	61
48	Stripping Analysis of As(III) by Means of Screen-Printed Electrodes Modified with Gold Nanoparticles and Carbon Black Nanocomposite. <i>Electroanalysis</i> , 2014 , 26, 931-939	3	57

(2017-2016)

47	Novel carbon black-cobalt phthalocyanine nanocomposite as sensing platform to detect organophosphorus pollutants at screen-printed electrode. <i>Electrochimica Acta</i> , 2016 , 188, 574-581	6.7	54	
46	Electroanalysis moves towards paper-based printed electronics: carbon black nanomodified inkjet-printed sensor for ascorbic acid detection as a case study. <i>Sensors and Actuators B: Chemical</i> , 2018 , 265, 155-160	8.5	53	
45	Paper-based synthesis of Prussian Blue Nanoparticles for the development of whole blood glucose electrochemical biosensor. <i>Talanta</i> , 2018 , 187, 59-64	6.2	49	
44	Hg(2+) detection using a disposable and miniaturized screen-printed electrode modified with nanocomposite carbon black and gold nanoparticles. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 8192-9	5.1	49	
43	Electrochemical Biosensors for Rapid Detection of Foodborne Salmonella: A Critical Overview. <i>Sensors</i> , 2017 , 17,	3.8	46	
42	Paper-Based Strips for the Electrochemical Detection of Single and Double Stranded DNA. <i>Analytical Chemistry</i> , 2018 , 90, 13680-13686	7.8	45	
41	Cholesterol biosensor based on inkjet-printed Prussian blue nanoparticle-modified screen-printed electrodes. <i>Sensors and Actuators B: Chemical</i> , 2015 , 221, 187-190	8.5	43	
4O	Microengine-assisted electrochemical measurements at printable sensor strips. <i>Chemical Communications</i> , 2015 , 51, 8668-71	5.8	43	
39	Carbon black assisted tailoring of Prussian Blue nanoparticles to tune sensitivity and detection limit towards H 2 O 2 by using screen-printed electrode. <i>Electrochemistry Communications</i> , 2014 , 47, 63-66	5.1	40	
38	Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M. <i>Sensors</i> , 2017 , 17,	3.8	39	
37	Paper-based electrochemical peptide nucleic acid (PNA) biosensor for detection of miRNA-492: a pancreatic ductal adenocarcinoma biomarker. <i>Biosensors and Bioelectronics</i> , 2020 , 165, 112371	11.8	32	
36	Sustainable monitoring of Zn(II) in biological fluids using office paper. <i>Sensors and Actuators B: Chemical</i> , 2017 , 253, 1199-1206	8.5	29	
35	Paper-based electroanalytical strip for user-friendly blood glutathione detection. <i>Sensors and Actuators B: Chemical</i> , 2019 , 294, 291-297	8.5	27	
34	Office Paper-Based Electrochemical Strips for Organophosphorus Pesticide Monitoring in Agricultural Soil. <i>Environmental Science & Environmental Scien</i>	10.3	26	
33	Experimental Comparison in Sensing Breast Cancer Mutations by Signal ON and Signal OFF Paper-Based Electroanalytical Strips. <i>Analytical Chemistry</i> , 2020 , 92, 1674-1679	7.8	25	
32	Electroanalytical Sensor Based on Gold-Nanoparticle-Decorated Paper for Sensitive Detection of Copper Ions in Sweat and Serum. <i>Analytical Chemistry</i> , 2021 , 93, 5225-5233	7.8	24	
31	Spectroscopic, morphological, and mechanistic investigation of the solvent-promoted aggregation of porphyrins modified in meso-positions by glucosylated steroids. <i>Chemistry - A European Journal</i> , 2011 , 17, 13743-53	4.8	23	
30	Paper-Based Electrochemical Devices in Biomedical Field: Recent Advances and Perspectives. <i>Comprehensive Analytical Chemistry</i> , 2017 , 77, 385-413	1.9	21	

29	Novel paper-based electroanalytical tools for food surveillance. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 4303-4311	4.4	18
28	A lab-on-a-tip approach to make electroanalysis user-friendly and de-centralized: Detection of copper ions in river water. <i>Analytica Chimica Acta</i> , 2018 , 1029, 1-7	6.6	17
27	A 96-well wax printed Prussian Blue paper for the visual determination of cholinesterase activity in human serum. <i>Biosensors and Bioelectronics</i> , 2019 , 134, 97-102	11.8	14
26	Novel bio-lab-on-a-tip for electrochemical glucose sensing in commercial beverages. <i>Biosensors and Bioelectronics</i> , 2020 , 165, 112334	11.8	9
25	Merging office/filter paper-based tools for pre-concentring and detecting heavy metals in drinking water. <i>Chemical Communications</i> , 2021 , 57, 7100-7103	5.8	9
24	Polymeric Materials for Printed-Based Electroanalytical (Bio)Applications. <i>Chemosensors</i> , 2017 , 5, 31	4	8
23	Multi-array wax paper-based platform for the pre-concentration and determination of silver ions in drinking water. <i>Talanta</i> , 2021 , 232, 122474	6.2	7
22	Nano-engineered screen-printed electrodes: A dynamic tool for detection of viruses. <i>TrAC - Trends in Analytical Chemistry</i> , 2021 , 143, 116374	14.6	7
21	Nanomaterial-based sensors 2020 , 329-359		6
20	Magnetic carbon spheres and their derivatives combined with printed electrochemical sensors. <i>Electrochimica Acta</i> , 2018 , 282, 247-254	6.7	5
19	Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. <i>Analytical Chemistry</i> , 2021 ,	7.8	5
18	A Smartphone-Based Chemosensor to Evaluate Antioxidants in Agri-Food Matrices by In Situ AuNP Formation. <i>Sensors</i> , 2021 , 21,	3.8	5
17	How to extend range linearity in enzyme inhibition-based biosensing assays. <i>Talanta</i> , 2018 , 189, 365-36	96.2	3
16	Development of a data dependent acquisition-based approach for the identification of unknown fast-acting toxins and their ester metabolites. <i>Talanta</i> , 2021 , 224, 121842	6.2	3
15	A Hybrid Screen-Printed Strip for Enhanced Electroanalysis towards Lead and Cadmium in Multi-Matrices. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 037516	3.9	3
14	ReviewAn Overview on Recent Progress in Screen-Printed Electroanalytical (Bio)Sensors 2022 , 1, 02340)1	3
13	Efforts, Challenges, and Future Perspectives of Graphene-Based (Bio)sensors for Biomedical Applications 2018 , 133-150		2
12	Sustainable Copper Electrochemical Stripping onto a Paper-Based Substrate for Clinical Application. <i>ACS Measurement Science Au</i> ,		2

LIST OF PUBLICATIONS

11	Non-invasive electrochemistry-driven metals tracing in human biofluids <i>Biosensors and Bioelectronics</i> , 2021 , 200, 113904	11.8	2
10	Paper-Based Lateral Flow Device for the Sustainable Measurement of Human Plasma Fibrinogen in Low-Resource Settings. <i>Analytical Chemistry</i> , 2021 , 93, 14007-14013	7.8	2
9	Carbon Black/Gold Nanoparticles Composite for Efficient Amperometric Sensors. <i>Lecture Notes in Electrical Engineering</i> , 2015 , 159-163	0.2	2
8	Multi-potential biomarkers for seafood quality assessment: Global wide implication for human health monitoring. <i>TrAC - Trends in Analytical Chemistry</i> , 2020 , 132, 116056	14.6	2
7	Facile development of cost effective and greener for all solid-state supercapacitor on paper substrate. <i>Journal of Energy Storage</i> , 2021 , 33, 102107	7.8	2
6	Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices. Biosensors, 2021, 11,	5.9	2
5	Enzyme-Based Materials 2019 , 179-209		1
4	Screen-printed electrodes as versatile electrochemical sensors and biosensors 2017,		1
3	Heavy metals detection at chemometrics-powered electrochemical (bio)sensors <i>Talanta</i> , 2022 , 244, 123410	6.2	1
2	Advanced nanoengineered-customized point-of-care tools for prostate-specific antigen <i>Mikrochimica Acta</i> , 2021 , 189, 27	5.8	1
1	Sweat urea bioassay based on degradation of Prussian Blue as the sensing architecture. <i>Analytica Chimica Acta</i> , 2022 , 1210, 339882	6.6	1