Rubén Gómez-SÃ;nchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6354986/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane supply and remodeling during autophagosome biogenesis. Current Opinion in Cell Biology, 2021, 71, 112-119.	5.4	56

 $_{2}$ Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock 10 Jf 50 702 Td (edition 1,430)

3	Impaired Mitophagy and Protein Acetylation Levels in Fibroblasts from Parkinson's Disease Patients. Molecular Neurobiology, 2019, 56, 2466-2481.	4.0	50
4	Vac8 spatially confines autophagosome formation at the vacuole. Journal of Cell Science, 2019, 132, .	2.0	48
5	Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. ELife, 2019, 8, .	6.0	114
6	Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. Journal of Cell Biology, 2018, 217, 2743-2763.	5.2	194
7	Acetylome in Human Fibroblasts From Parkinson's Disease Patients. Frontiers in Cellular Neuroscience, 2018, 12, 97.	3.7	15
8	Conserved Atg8 recognition sites mediate Atg4 association with autophagosomal membranes and Atg8 deconjugation. EMBO Reports, 2017, 18, 765-780.	4.5	59
9	Mitochondria-Associated Membranes (MAMs): Overview and Its Role in Parkinson's Disease. Molecular Neurobiology, 2017, 54, 6287-6303.	4.0	60
10	Atg4 proteolytic activity can be inhibited by Atg1 phosphorylation. Nature Communications, 2017, 8, 295.	12.8	70
11	Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae. Methods in Enzymology, 2017, 588, 323-365.	1.0	2
12	Mitochondria: Key Organelle in Parkinson's Disease. Parkinson's Disease, 2016, 2016, 1-2.	1.1	3
13	G2019S Mutation of LRRK2 Increases Autophagy via MEK/ERK Pathway. , 2016, , 123-142.		2
14	mRNA and protein dataset of autophagy markers (LC3 and p62) in several cell lines. Data in Brief, 2016, 7, 641-647.	1.0	39
15	The Basics of Autophagy. , 2016, , 3-20.		6
16	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
17			
17	PINK1 deficiency enhances autophagy and mitophagy induction. Molecular and Cellular Oncology, 2016, 3, e1046579.	0.7	18

Rubã©n Gã³mez-Sãinchez

#	Article	IF	CITATIONS
19	Pompe Disease and Autophagy: Partners in Crime, or Cause and Consequence?. Current Medicinal Chemistry, 2016, 23, 2275-2285.	2.4	6
20	Routine Western blot to check autophagic flux: Cautions and recommendations. Analytical Biochemistry, 2015, 477, 13-20.	2.4	25
21	Control of Autophagy in Parkinson's Disease. Current Topics in Neurotoxicity, 2015, , 91-122.	0.4	1
22	Is the Modulation of Autophagy the Future in the Treatment of Neurodegenerative Diseases?. Current Topics in Medicinal Chemistry, 2015, 15, 2152-2174.	2.1	11
23	G2019S LRRK2 mutant fibroblasts from Parkinson's disease patients show increased sensitivity to neurotoxin 1-methyl-4-phenylpyridinium dependent of autophagy. Toxicology, 2014, 324, 1-9.	4.2	40
24	Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiology of Disease, 2014, 62, 426-440.	4.4	49
25	Links Between Paraquat and Parkinson's Disease. , 2014, , 819-842.		0
26	The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cellular and Molecular Life Sciences, 2013, 70, 121-136.	5.4	148
27	Autophagy, mitochondria and 3â€nitropropionic acid joined in the same model. British Journal of Pharmacology, 2013, 168, 60-62.	5.4	5
28	Possible involvement of the relationship of LRRK2 and autophagy in Parkinson's disease. Biochemical Society Transactions, 2012, 40, 1129-1133.	3.4	4
29	The MAPK1/3 pathway is essential for the deregulation of autophagy observed in G2019S LRRK2 mutant fibroblasts. Autophagy, 2012, 8, 1537-1539.	9.1	23
30	Parkinson's Disease: Leucine-Rich Repeat Kinase 2 and Autophagy, Intimate Enemies. Parkinson's Disease, 2012, 2012, 1-9.	1.1	6
31	Fipronil is a powerful uncoupler of oxidative phosphorylation that triggers apoptosis in human neuronal cell line SHSY5Y. NeuroToxicology, 2011, 32, 935-943.	3.0	70
32	ASK1 Overexpression Accelerates Paraquat-Induced Autophagy via Endoplasmic Reticulum Stress. Toxicological Sciences, 2011, 119, 156-168.	3.1	48
33	Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: Modulation by the Nrf2/Trx axis. Free Radical Biology and Medicine, 2010, 48, 1370-1381.	2.9	120
34	DJ-1 as a Modulator of Autophagy: An Hypothesis. Scientific World Journal, The, 2010, 10, 1574-1579.	2.1	4
35	Curcumin exposure induces expression of the Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells. Neuroscience Letters, 2010, 468, 120-124.	2.1	27
36	The neuroprotective effect of talipexole from paraquat-induced cell death in dopaminergic neuronal cells. NeuroToxicology, 2010, 31, 701-708.	3.0	8

#	Article	IF	CITATIONS
37	Effect of paraquat exposure on nitric oxide-responsive genes in rat mesencephalic cells. Nitric Oxide - Biology and Chemistry, 2010, 23, 51-59.	2.7	13
38	Autophagy: A Possible Defense Mechanism in Parkinson's Disease?. , 0, , .		0
39	Paraquat, Between Apoptosis and Autophagy. , 0, , .		0