
Michael G Friedrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6354910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in Phospholipid Composition of the Human Cerebellum and Motor Cortex during Normal Ageing. Nutrients, 2022, 14, 2495.	4.1	2
2	Tau Is Truncated in Five Regions of the Normal Adult Human Brain. International Journal of Molecular Sciences, 2021, 22, 3521.	4.1	10
3	New insights into the mechanisms of age-related protein-protein crosslinking in the human lens. Experimental Eye Research, 2021, 209, 108679.	2.6	4
4	Spontaneous protein–protein crosslinking at glutamine and glutamic acid residues in long-lived proteins. Biochemical Journal, 2021, 478, 327-339.	3.7	5
5	Spontaneous Cleavage at Glu and Gln Residues in Long-Lived Proteins. ACS Chemical Biology, 2021, 16, 2244-2254.	3.4	4
6	Spatiotemporal changes in the human lens proteome: Critical insights into long-lived proteins. Progress in Retinal and Eye Research, 2020, 76, 100802.	15.5	30
7	Cleavage C-terminal to Asp leads to covalent crosslinking of long-lived human proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 831-839.	2.3	25
8	Molecular Processes Implicated in Human Age-Related Nuclear Cataract. , 2019, 60, 5007.		40
9	Mechanism of protein cleavage at asparagine leading to protein–protein cross-links. Biochemical Journal, 2019, 476, 3817-3834.	3.7	22
10	DehydroalanylGly, a new post translational modification resulting from the breakdown of glutathione. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 907-913.	2.4	7
11	Can the Fact That Myelin Proteins Are Old and Break down Explain the Origin of Multiple Sclerosis in Some People?. Journal of Clinical Medicine, 2018, 7, 281.	2.4	8
12	Spontaneous cross-linking of proteins at aspartate and asparagine residues is mediated via a succinimide intermediate. Biochemical Journal, 2018, 475, 3189-3200.	3.7	20
13	The phospholipid composition of the human entorhinal cortex remains relatively stable over 80Âyears of adult aging. GeroScience, 2017, 39, 73-82.	4.6	24
14	Hotspots of age-related protein degradation: the importance of neighboring residues for the formation of non-disulfide crosslinks derived from cysteine. Biochemical Journal, 2017, 474, 2475-2487.	3.7	15
15	Old Proteins in Man: A Field in its Infancy. Trends in Biochemical Sciences, 2016, 41, 654-664.	7.5	84
16	lsoaspartic acid is present at specific sites in myelin basic protein from multiple sclerosis patients: could this represent a trigger for disease onset?. Acta Neuropathologica Communications, 2016, 4, 83.	5.2	34
17	Amyloid Plaque in the Human Brain Can Decompose from Aβ(1-40/1-42) by Spontaneous Nonenzymatic Processes. Analytical Chemistry, 2016, 88, 2675-2684.	6.5	32
18	The etiology of human age-related cataract. Proteins don't last forever. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 192-198.	2.4	90

MICHAEL G FRIEDRICH

#	Article	IF	CITATIONS
19	Decreases in Phospholipids Containing Adrenic and Arachidonic Acids Occur in the Human Hippocampus over the Adult Lifespan. Lipids, 2015, 50, 861-872.	1.7	30
20	Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease. Neurobiology of Aging, 2015, 36, 1659-1669.	3.1	50
21	Old proteins and the <scp>A</scp> chilles heel of mass spectrometry. The role of proteomics in the etiology of human cataract. Proteomics - Clinical Applications, 2014, 8, 195-203.	1.6	13
22	Degradation of an Old Human Protein. Journal of Biological Chemistry, 2012, 287, 39012-39020.	3.4	20
23	Molecular signatures of longâ€lived proteins: autolytic cleavage adjacent to serine residues. Aging Cell, 2012, 11, 1125-1127.	6.7	27
24	Is protein methylation in the human lens a result of non-enzymatic methylation by S-adenosylmethionine?. Experimental Eye Research, 2012, 99, 48-54.	2.6	28
25	Tight binding of proteins to membranes from older human cells. Age, 2011, 33, 543-554.	3.0	23
26	Understanding the \hat{I}_{\pm} -crystallin cell membrane conjunction. Molecular Vision, 2011, 17, 2798-807.	1.1	18
27	Large-Scale Binding of α-Crystallin to Cell Membranes of Aged Normal Human Lenses: A Phenomenon That Can Be Induced by Mild Thermal Stress. , 2010, 51, 5145.		34
28	Sphingolipid distribution changes with age in the human lens. Journal of Lipid Research, 2010, 51, 2753-2760.	4.2	66
29	Membrane Association of Proteins in the Aging Human Lens: Profound Changes Take Place in the Fifth Decade of Life. , 2009, 50, 4786.		50
30	Free and Bound Water in Normal and Cataractous Human Lenses. , 2008, 49, 1991.		50
31	Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, αâ€crystallin, in maintaining lens flexibility. Aging Cell, 2007, 6, 807-815.	6.7	113