Tao-yiao John Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6354842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term increase in sensitivity to ketamine's behavioral effects in mice exposed to mild blast induced traumatic brain injury. Experimental Neurology, 2022, 350, 113963.	4.1	6
2	Gut microbiota and metabolic marker alteration following dietary isoflavoneâ€photoperiod interaction. Endocrinology, Diabetes and Metabolism, 2021, 4, e00190.	2.4	8
3	ÂKnockout of the circadian gene, Per2, disrupts corticosterone secretion and results in depressiveâ€like behaviors and deficits in startle responses. BMC Neuroscience, 2021, 22, 5.	1.9	15
4	RNA-sequencing of AVPV and ARH reveals vastly different temporal and transcriptomic responses to estradiol in the female rat hypothalamus. PLoS ONE, 2021, 16, e0256148.	2.5	5
5	Blast-Induced Mild Traumatic Brain Injury Alterations of Corticotropin-Releasing Factor Neuronal Activity in the Mouse Hypothalamic Paraventricular Nucleus. Frontiers in Synaptic Neuroscience, 2021, 13, 804898.	2.5	3
6	Comparative transcriptome analysis between patient and endometrial cancer cell lines to determine common signaling pathways and markers linked to cancer progression. Oncotarget, 2021, 12, 2500-2513.	1.8	2
7	Sex differences in the hypothalamic-pituitary-adrenal axis response following a single or multiple days of sleep restriction. Stress, 2020, 23, 417-426.	1.8	9
8	Sex-related differences in intravenous ketamine effects on dissociative stereotypy and antinociception in male and female rats. Pharmacology Biochemistry and Behavior, 2020, 199, 173042.	2.9	10
9	Vendor differences in anxiety-like behaviors in female and male Sprague Dawley rats. Physiology and Behavior, 2020, 227, 113131.	2.1	14
10	Sleep Deprivation Alters the Pituitary Stress Transcriptome in Male and Female Mice. Frontiers in Endocrinology, 2019, 10, 676.	3.5	7
11	Isoflavones Alter Hypothalamic–Pituitary–Adrenal Axis Response Following Photoperiod Alteration. Neuroscience, 2019, 406, 268-277.	2.3	3
12	SUN-477 Chronic Variable Stress Worsens Effects of Mild Blast Traumatic Brain Injury on the Stress Response. Journal of the Endocrine Society, 2019, 3, .	0.2	0
13	Sex-Dependent Effects of Mild Blast-induced Traumatic Brain Injury on Corticotropin-releasing Factor Receptor Gene Expression: Potential Link to Anxiety-like Behaviors. Neuroscience, 2018, 392, 1-12.	2.3	25
14	Differential Responses of the HPA Axis to Mild Blast Traumatic Brain Injury in Male and Female Mice. Endocrinology, 2018, 159, 2363-2375.	2.8	58
15	GnRH-(1–5) Inhibits TGF-β Signaling to Regulate the Migration of Immortalized Gonadotropin-Releasing Hormone Neurons. Frontiers in Endocrinology, 2018, 9, 45.	3.5	6
16	Factors promoting vulnerability to dysregulated stress reactivity and stressâ€related disease. Journal of Neuroendocrinology, 2018, 30, e12641.	2.6	38
17	The interaction of dietary isoflavones and estradiol replacement on behavior and brain-derived neurotrophic factor in the ovariectomized rat. Neuroscience Letters, 2017, 640, 53-59.	2.1	16
18	Dietary Isoflavone-Dependent and Estradiol Replacement Effects on Body Weight in the Ovariectomized (OVX) Rat. Hormone and Metabolic Research, 2017, 49, 457-465.	1.5	20

ΤΑΟ-ΥΙΑΟ ЈΟΗΝ WU

#	Article	IF	CITATIONS
19	Regulation of Gonadotropin-Releasing Hormone-(1–5) Signaling Genes by Estradiol Is Age Dependent. Frontiers in Endocrinology, 2017, 8, 282.	3.5	17
20	Protein Kinase A and Anxiety-Related Behaviors: A Mini-Review. Frontiers in Endocrinology, 2016, 7, 83.	3.5	26
21	Characterization of GPR101 transcript structure and expression patterns. Journal of Molecular Endocrinology, 2016, 57, 97-111.	2.5	34
22	Screening for GPR101 defects in pediatric pituitary corticotropinomas. Endocrine-Related Cancer, 2016, 23, 357-365.	3.1	30
23	Studies of mice with cyclic AMP-dependent protein kinase (PKA) defects reveal the critical role of PKA's catalytic subunits in anxiety. Behavioural Brain Research, 2016, 307, 1-10.	2.2	10
24	GnRH-(1–5) activates matrix metallopeptidase-9 to release epidermal growth factor and promote cellular invasion. Molecular and Cellular Endocrinology, 2015, 415, 114-125.	3.2	19
25	Gigantism and Acromegaly Due to Xq26 Microduplications and <i>GPR101</i> Mutation. New England Journal of Medicine, 2014, 371, 2363-2374.	27.0	292
26	Neuroendocrine Regulation and Homeostasis. Journal of Neuroendocrinology, 2014, 26, 555-556.	2.6	0
27	GnRH-(1–5) Transactivates EGFR in Ishikawa Human Endometrial Cells via an Orphan G Protein-Coupled Receptor. Molecular Endocrinology, 2014, 28, 80-98.	3.7	48
28	β-Arrestin 2 Is a Mediator of GnRH-(1–5) Signaling in Immortalized GnRH Neurons. Endocrinology, 2013, 154, 4726-4736.	2.8	23
29	The Novel Actions of the Metabolite GnRH-(1-5) are Mediated by a G Protein-Coupled Receptor. Frontiers in Endocrinology, 2013, 4, 83.	3.5	16
30	The Metabolite GnRH-(1-5) Inhibits the Migration of Immortalized GnRH Neurons. Endocrinology, 2013, 154, 783-795.	2.8	28
31	The Androgen Metabolite, 5α-androstane-3β,17β-diol, Decreases Cytokine-Induced Cyclooxygenase-2, Vascular Cell Adhesion Molecule-1 Expression, and P-Glycoprotein Expression in Male Human Brain Microvascular Endothelial Cells. Endocrinology, 2012, 153, 5949-5960.	2.8	35
32	The effect of chronic immobilization stress on leptin signaling in the ovariectomized (OVX) rat. Endocrine, 2012, 42, 717-725.	2.3	14
33	Anxiety phenotype in mice that overexpress protein kinase A. Psychoneuroendocrinology, 2012, 37, 836-843.	2.7	21
34	Is the metalloendopeptidase EC 3.4.24.15 (EP24.15), the enzyme that cleaves luteinizing hormone-releasing hormone (LHRH), an activating enzyme?. Reproduction, 2010, 139, 319-330.	2.6	17
35	Estrogen Receptor-Î ² Agonist Diarylpropionitrile: Biological Activities of R- and S-Enantiomers on Behavior and Hormonal Response to Stress. Endocrinology, 2009, 150, 1817-1825.	2.8	102
36	A Biological Role for the Gonadotrophinâ€Releasing Hormone (GnRH) Metabolite, GnRHâ€(1â€5). Journal of Neuroendocrinology, 2009, 21, 293-298.	2.6	7

ΤΑΟ-ΥΙΑΟ ЈΟΗΝ WU

#	Article	IF	CITATIONS
37	Cuprizone Demyelination of the Corpus Callosum in Mice Correlates with Altered Social Interaction and Impaired Bilateral Sensorimotor Coordination. ASN Neuro, 2009, 1, AN20090032.	2.7	76
38	Postovariectomy weight gain in female rats is reversed by estrogen receptor α agonist, propylpyrazoletriol. American Journal of Obstetrics and Gynecology, 2008, 199, 67.e1-67.e5.	1.3	52
39	CM-MM and ACE genotypes and physiological prediction of the creatine kinase response to exercise. Journal of Applied Physiology, 2007, 103, 504-510.	2.5	95
40	LHRH-(1–5): a bioactive peptide regulating reproduction. Trends in Endocrinology and Metabolism, 2007, 18, 386-392.	7.1	23
41	A processed metabolite of luteinizing hormone-releasing hormone has proliferative effects in endometrial cells. American Journal of Obstetrics and Gynecology, 2007, 196, 33.e1-33.e5.	1.3	10
42	Use of the placental perfusion model to evaluate transplacental passage of Trypanosoma cruzi. American Journal of Obstetrics and Gynecology, 2005, 192, 586-591.	1.3	24