Zafar Khan Ghouri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6354536/publications.pdf

Version: 2024-02-01

279487 1,949 54 23 citations h-index papers

g-index 56 56 56 2623 docs citations times ranked citing authors all docs

253896

43

#	Article	IF	CITATIONS
1	Solution Combustion Synthesis of Novel S,B-Codoped CoFe Oxyhydroxides for the Oxygen Evolution Reaction in Saline Water. ACS Omega, 2022, 7, 5521-5536.	1.6	13
2	Cooperative electrocatalytic effect of Pd and Ce alloys nanoparticles in PdCe@CNWs electrode for oxygen evolution reaction (OER). Molecular Catalysis, 2022, 522, 112255.	1.0	10
3			

#	Article	IF	CITATIONS
19	CePdâ∈Nanoparticlesâ€Incorporated Carbon Nanofibers as Efficient Counter Electrode for DSSCs. ChemistrySelect, 2018, 3, 12314-12319.	0.7	4
20	Leaching of Some Essential and Non-Essential Heavy Metals from Modern Glazed Ceramic Crockeries Imported into Qatar from China, India and Spain. Journal of Analytical & Bioanalytical Techniques, 2018, 09, .	0.6	1
21	Surfactant/organic solvent free single-step engineering of hybrid graphene-Pt/TiO2 nanostructure: Efficient photocatalytic system for the treatment of wastewater coming from textile industries. Scientific Reports, 2018, 8, 14656.	1.6	14
22	CoNi Nanoparticles/CNT Composite as Effective Anode for Direct Urea Fuel Cells. International Journal of Electrochemical Science, 2018, , 4693-4699.	0.5	11
23	Validation of Total Mercury in Marine Sediment and Biological Samples, Using Cold Vapour Atomic Absorption Spectrometry. Methods and Protocols, 2018, 1, 31.	0.9	9
24	Effective NiMn Nanoparticles-Functionalized Carbon Felt as an Effective Anode for Direct Urea Fuel Cells. Nanomaterials, 2018, 8, 338.	1.9	19
25	Thermo-Rheological Complexity of Novel Branch Polyethylene Synthesized by High Performance Bulky α-Diimine Nickel (II) Catalysts. Materials Focus, 2018, 7, 573-581.	0.4	1
26	Applicable anode based on Co3O4–SrCO3 heterostructure nanorods-incorporated CNFs with low-onset potential for DUFCs. Applied Nanoscience (Switzerland), 2017, 7, 625-631.	1.6	26
27	ZnO@C (core@shell) microspheres derived from spent coffee grounds as applicable non-precious electrode material for DMFCs. Scientific Reports, 2017, 7, 1738.	1.6	27
28	Engineering of magnetically separable ZnFe2O4@ TiO2 nanofibers for dye-sensitized solar cells and removal of pollutant from water. Journal of Alloys and Compounds, 2017, 723, 477-483.	2.8	47
29	Critical Behavior of La0.8Ca0.2Mn1â^'xCoxO3 Perovskite (0.1 â‰록 â‰록0.3). Magnetochemistry, 2017, 3, 28.	1.0	10
30	Capacitance of MnO2 Micro-Flowers Decorated CNFs in Alkaline Electrolyte and Its Bi-Functional Electrocatalytic Activity toward Hydrazine Oxidation. International Journal of Electrochemical Science, 2017, 12, 2583-2592.	0.5	2
31	Synthesis and Physicochemical Studies of Perovskite Manganite La0.8Ca0.2Nn1-xCoxOâ,f (0 ≤ ≤0.3). Journal of Magnetics, 2017, 22, 353-359.	0.2	1
32	Nickel nanoparticles-decorated graphene as highly effective and stable electrocatalyst for urea electrooxidation. Journal of Molecular Catalysis A, 2016, 421, 83-91.	4.8	77
33	Nano-designed λ-CaCO3@rGO photo-catalyst for effective adsorption and simultaneous removal of organic pollutant. Journal of Materials Science: Materials in Electronics, 2016, 27, 9593-9598.	1.1	4
34	Supercapacitors based on ternary nanocomposite of TiO2&Pt@graphenes. Journal of Materials Science: Materials in Electronics, 2016, 27, 3894-3900.	1.1	8
35	Photoluminescent and transparent Nylon-6 nanofiber mat composited by CdSe@ZnS quantum dots and poly (methyl methacrylate). Polymer, 2016, 85, 89-95.	1.8	9
36	Effective photocatalytic efficacy of hydrothermally synthesized silver phosphate decorated titanium dioxide nanocomposite fibers. Journal of Colloid and Interface Science, 2016, 465, 225-232.	5.0	55

3

#	Article	IF	CITATIONS
37	Ni&Mn nanoparticles-decorated carbon nanofibers as effective electrocatalyst for urea oxidation. Applied Catalysis A: General, 2016, 510, 180-188.	2.2	139
38	The $(2\hat{A}-\hat{A}2)$ tunnels structured manganese dioxide nanorods with $\hat{l}\pm$ phase for lithium air batteries. Superlattices and Microstructures, 2016, 90, 184-190.	1.4	23
39	Amorphous SiO ₂ NP-Incorporated Poly(vinylidene fluoride) Electrospun Nanofiber Membrane for High Flux Forward Osmosis Desalination. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4561-4574.	4.0	131
40	Nano-engineered ZnO/CeO2 dots@CNFs for fuel cell application. Arabian Journal of Chemistry, 2016, 9, 219-228.	2.3	40
41	Photocatalytic degradation and antibacterial investigation of nano synthesized Ag ₃ VO ₄ particles @PAN nanofibers. Carbon Letters, 2016, 18, 30-36.	3.3	28
42	Capacitance of MnO2 Micro-flowers Decorated CNFsin Alkaline Electrolyte and Its Bi-functional Electrocatalytic Activity Toward Hydrazine Oxidation. , 2016, , .		0
43	Influence of copper content on the electrocatalytic activity toward methanol oxidation of CoχCuy alloy nanoparticles-decorated CNFs. Scientific Reports, 2015, 5, 16695.	1.6	63
44	Carbon quantum dots anchored TiO2 nanofibers: Effective photocatalyst for waste water treatment. Ceramics International, 2015, 41, 11953-11959.	2.3	166
45	Characterization and antibacterial properties of aminophenol grafted and Ag NPs decorated graphene nanocomposites. Ceramics International, 2015, 41, 5656-5662.	2.3	50
46	Synthesis and characterization of Co/SrCO3 nanorods-decorated carbon nanofibers as novel electrocatalyst for methanol oxidation in alkaline medium. Ceramics International, 2015, 41, 6575-6582.	2.3	39
47	Synthesis and characterization of photocatalytic and antibacterial PAN/Ag2CO3 composite nanofibers by ion exchange method. Fibers and Polymers, 2015, 16, 1336-1342.	1.1	13
48	Facile synthesis of luminescent and amorphous La ₂ 0 ₃₊ nanofibrous membranes with robust softness. Nanoscale, 2015, 7, 14248-14253.	2.8	16
49	High-efficiency super capacitors based on hetero-structured α-MnO2 nanorods. Journal of Alloys and Compounds, 2015, 642, 210-215.	2.8	51
50	Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chemistry, 2015, 17, 3791-3797.	4.6	337
51	Synthesis and Electrochemical Properties of MnO ₂ and Co-Decorated Graphene as Novel Nanocomposite for Electrochemical Super Capacitors Application. Energy and Environment Focus, 2015, 4, 34-39.	0.3	28
52	Synthesis and characterization of Nitrogen-doped & Discrete Representation of Nitrogen-doped amp; CaCO3-decorated reduced graphene oxide nanocomposite for electrochemical supercapacitors. Electrochimica Acta, 2015, 184, 193-202.	2.6	36
53	Co/CeO2-decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline medium. Ceramics International, 2015, 41, 2271-2278.	2.3	64
54	Experimental study on synthesis of Co/CeO ₂ -doped carbon nanofibers and its performance in supercapacitors. Carbon Letters, 2015, 16, 270-274.	3.3	13