Dario Pasini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6354521/publications.pdf

Version: 2024-02-01

87888 182427 3,466 129 38 51 citations h-index g-index papers 136 136 136 3658 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Chiroptical sensing of perrhenate in aqueous media by a chiral organic cage. Chemical Communications, 2022, 58, 3897-3900.	4.1	20
2	A Sustainable Synthetic Approach to the Indaceno[1,2-b:5,6-b′]dithiophene (IDT) Core through Cascade Cyclization–Deprotection Reactions. Chemistry, 2022, 4, 206-215.	2.2	2
3	On the Dynamics of the Carbon–Bromine Bond Dissociation in the 1-Bromo-2-Methylnaphthalene Radical Anion. Molecules, 2022, 27, 4539.	3.8	1
4	Regioselective Pummerer rearrangement in [2.2]paracyclophanes. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 189-194.	1.6	1
5	Biocompatible graft copolymers from bacterial poly(\hat{l}^3 -glutamic acid) and poly(lactic acid). Polymer Chemistry, 2021, 12, 3784-3793.	3.9	18
6	Helical Nanofibers Formed by Palladiumâ€Mediated Assembly of Organic Homochiral Macrocycles Containing Binaphthyl and Pyridyl Units. ChemPlusChem, 2021, 86, 270-274.	2.8	7
7	Autonomous Self-Healing Strategy for Stable Sodium-Ion Battery: A Case Study of Black Phosphorus Anodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13170-13182.	8.0	31
8	Largeâ€Area Semiâ€Transparent Luminescent Solar Concentrators Based on Large Stokes Shift Aggregationâ€Induced Fluorinated Emitters Obtained Through a Sustainable Synthetic Approach. Advanced Optical Materials, 2021, 9, 2100182.	7.3	37
9	A Donor Polymer with a Good Compromise between Efficiency and Sustainability for Organic Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2100069.	5.8	15
10	Clickable 2,2â€bis(hydroxymethyl)propionic acidâ€derived AB 2 monomers: Hyperbranched polyesters through the CuAAC cycloaddition (click) reaction. Journal of Polymer Science, 2021, 59, 2014-2022.	3.8	6
11	Triptycene derivatives as chiral probes for studying the molecular enantiorecognition on subâ€2â€Î1⁄4m particle cellulose tris(3,5â€dimethylphenylcarbamate) chiral stationary phase. Chirality, 2021, 33, 883-890.	2.6	4
12	Anthradithiophene-based organic semiconductors through regiodirected double annulations. Journal of Materials Chemistry C, 2021, 9, 9302-9308.	5.5	15
13	Blue light driven free-radical polymerization using arylazo sulfones as initiators. Polymer Chemistry, 2021, 12, 5747-5751.	3.9	8
14	On the SavÃ@ant's Concerted/Stepwise Model. The Electroreduction of Halogenated Naphthalene Derivatives as a Case Study. ChemElectroChem, 2021, 8, 4337-4344.	3.4	5
15	Large polarization of push–pull "Cruciformsâ€ <i>via</i> coordination with lanthanide ions. New Journal of Chemistry, 2021, 46, 221-227.	2.8	5
16	Free radical cyclopolymerization: A tool towards sequence control in functional polymers. European Polymer Journal, 2020, 122, 109378.	5.4	14
17	Aggregationâ€induced Emission: Aggregationâ€induced Circularly Polarized Luminescence: Chiral Organic Materials for Emerging Optical Technologies (Adv. Mater. 41/2020). Advanced Materials, 2020, 32, 2070309.	21.0	4
18	"Clickable―bacterial poly(γ-glutamic acid). Polymer Chemistry, 2020, 11, 5582-5589.	3.9	31

#	Article	IF	Citations
19	Crystallization-induced room-temperature phosphorescence in fumaramides. CrystEngComm, 2020, 22, 7782-7785.	2.6	27
20	Recent Advances in Non-Fullerene Acceptors of the IDIC/ITIC Families for Bulk-Heterojunction Organic Solar Cells. International Journal of Molecular Sciences, 2020, 21, 8085.	4.1	31
21	Chiral Triptycenes in Supramolecular and Materials Chemistry. ChemistryOpen, 2020, 9, 719-727.	1.9	21
22	Synthesis and Evaluation of Scalable D-A-D π-Extended Oligomers as p-Type Organic Materials for Bulk-Heterojunction Solar Cells. Polymers, 2020, 12, 720.	4.5	13
23	Aggregationâ€Induced Circularly Polarized Luminescence: Chiral Organic Materials for Emerging Optical Technologies. Advanced Materials, 2020, 32, e1908021.	21.0	107
24	Binaphthyl-Based Macrocycles as Optical Sensors for Aromatic Diphenols. Molecules, 2020, 25, 514.	3.8	0
25	One-Pot Regiodirected Annulations for the Rapid Synthesis of π-Extended Oligomers. Organic Letters, 2020, 22, 3263-3267.	4.6	25
26	Weissâ€Cook Condensations for the Synthesis of Bridged Bithiophene Monomers and Polymers. ChemistrySelect, 2019, 4, 12569-12572.	1.5	5
27	Visible light 3D printing with epoxidized vegetable oils. Additive Manufacturing, 2019, 25, 317-324.	3.0	33
28	Scalable Synthesis of Naphthothiophene and Benzodithiophene Scaffolds as π-Conjugated Synthons for Organic Materials. Synthesis, 2019, 51, 677-682.	2.3	12
29	Scalable Synthesis of Naphthothiophene-based D-Ï€-D Extended Oligomers through Cascade Direct Arylation Processes. Synlett, 2018, 29, 2577-2581.	1.8	13
30	Cyclopolymerizations: Synthetic Tools for the Precision Synthesis of Macromolecular Architectures. Chemical Reviews, 2018, 118, 8983-9057.	47.7	93
31	The efficient cyclopolymerization of silylâ€ŧethered styrenic difunctional monomers. Journal of Polymer Science Part A, 2018, 56, 1593-1599.	2.3	6
32	Donor–acceptor conjugated copolymers incorporating tetrafluorobenzene as the Ï€â€electron deficient unit. Journal of Polymer Science Part A, 2017, 55, 1601-1610.	2.3	20
33	Optoelectronic devices of highly efficient luminogens in the solid state: general discussion. Faraday Discussions, 2017, 196, 455-460.	3.2	0
34	Advanced functional luminogens in the solid-state: general discussion. Faraday Discussions, 2017, 196, 317-334.	3.2	0
35	New and efficient fluorescent and phosphorescent luminogens: general discussion. Faraday Discussions, 2017, 196, 191-218.	3.2	0
36	Biomedical applications of luminogens: general discussion. Faraday Discussions, 2017, 196, 403-414.	3.2	0

#	Article	IF	CITATIONS
37	Domino Direct Arylation and Cross-Aldol for Rapid Construction of Extended Polycyclic π-Scaffolds. Journal of the American Chemical Society, 2017, 139, 8788-8791.	13.7	54
38	Structure–activity relationship for the solid state emission of a new family of "push–pull― Ï€-extended chromophores. Faraday Discussions, 2017, 196, 143-161.	3.2	22
39	Graft copolymers from poly (\hat{l}^3 -glutamic acid): Innovative macromolcular scaffolds for additive manufacturing from renewable natural resources. , 2017, , .		0
40	Direct Arylation Strategies in the Synthesis of π-Extended Monomers for Organic Polymeric Solar Cells. Molecules, 2017, 22, 21.	3.8	26
41	Chiral Nanotubes. Nanomaterials, 2017, 7, 167.	4.1	26
42	Microstructured chitosan/poly(\hat{I}^3 -glutamic acid) polyelectrolyte complex hydrogels by computer-aided wet-spinning for biomedical three-dimensional scaffolds. Journal of Bioactive and Compatible Polymers, 2016, 31, 531-549.	2.1	56
43	Conjugated Thiophene-Fused Isatin Dyes through Intramolecular Direct Arylation. Journal of Organic Chemistry, 2016, 81, 11035-11042.	3.2	48
44	A chiroptical molecular sensor for ferrocene. Chemical Communications, 2016, 52, 11492-11495.	4.1	50
45	Recent Advances in Sensing Using Atropoisomeric Molecular Receptors. Chirality, 2016, 28, 116-123.	2.6	38
46	Long-living optical gain induced by solvent viscosity in a push–pull molecule. Physical Chemistry Chemical Physics, 2016, 18, 18289-18296.	2.8	8
47	Polymorphism-dependent aggregation induced emission of a push–pull dye and its multi-stimuli responsive behavior. Journal of Materials Chemistry C, 2016, 4, 2979-2989.	5. 5	66
48	Synthesis of Binaphthyl-Based Push-Pull Chromophores with Supramolecularly Polarizable Acceptor Ends. Journal of Chemistry, 2015, 2015, 1-7.	1.9	4
49	Solvent Molding of Organic Morphologies Made of Supramolecular Chiral Polymers. Journal of the American Chemical Society, 2015, 137, 8150-8160.	13.7	48
50	Synthesis, chiroptical and SHG properties of polarizable push–pull dyes built on π-extended binaphthyls. RSC Advances, 2015, 5, 21495-21503.	3.6	13
51	Chiral nanostructuring of multivalent macrocycles in solution and on surfaces. Organic and Biomolecular Chemistry, 2015, 13, 3593-3601.	2.8	48
52	Surfaceâ^'Enhanced Polymerization via Schiff-Base Coupling at the Solidâ€"Water Interface under pH Control. Journal of Physical Chemistry C, 2015, 119, 19228-19235.	3.1	39
53	Homochiral BINOL-based macrocycles with π-electron-rich, electron-withdrawing or extended spacing units as receptors for C ₆₀ . Beilstein Journal of Organic Chemistry, 2014, 10, 1308-1316.	2.2	5
54	â€~Clickable' hydrogels for all: facile fabrication and functionalization. Biomaterials Science, 2014, 2, 67-75.	5.4	57

#	Article	IF	CITATIONS
55	Stereospecific generation of homochiral helices in coordination polymers built from enantiopure binaphthyl-based ligands. CrystEngComm, 2014, 16, 8582-8590.	2.6	14
56	Crystal structure analyses facilitate understanding of synthesis protocols in the preparation of $6,6\hat{a}\in^2$ -dibromo-substituted BINOL compounds. CrystEngComm, 2014, 16, 10131-10138.	2.6	6
57	Nanostructuring with chirality: binaphthyl-based synthons for the production of functional oriented nanomaterials. Nanoscale, 2014, 6, 7165-7174.	5.6	47
58	Switching of emissive and NLO properties in push–pull chromophores with crescent PPV-like structures. Physical Chemistry Chemical Physics, 2013, 15, 1666-1674.	2.8	44
59	From red to blue shift: switching the binding affinity from the acceptor to the donor end by increasing the π-bridge in push–pull chromophores with coordinative ends. New Journal of Chemistry, 2013, 37, 2792.	2.8	33
60	Knockout of <i>pgdS</i> and <i>ggt</i> genes improves γâ€PGA yield in <i>B. subtilis</i> Biotechnology and Bioengineering, 2013, 110, 2006-2012.	3.3	72
61	Direct Evidence of Torsional Motion in an Aggregation-Induced Emissive Chromophore. Journal of Physical Chemistry C, 2013, 117, 27161-27166.	3.1	46
62	A Chiroptical Probe for Sensing Metal lons in Water. European Journal of Organic Chemistry, 2013, 2013, 6078-6083.	2.4	40
63	The Click Reaction as an Efficient Tool for the Construction of Macrocyclic Structures. Molecules, 2013, 18, 9512-9530.	3.8	117
64	Polystyrene-based self-aggregating polymers based on UPy units. Polymer Bulletin, 2012, 69, 911-923.	3.3	14
65	A BINOL-based chiral polyammonium receptor for highly enantioselective recognition and fluorescence sensing of (S,S)-tartaric acid in aqueous solution. Chemical Communications, 2012, 48, 10428.	4.1	73
66	Poly($\hat{I}^3\hat{a}\in g$ lutamic acid) esters with reactive functional groups suitable for orthogonal conjugation strategies. Journal of Polymer Science Part A, 2012, 50, 4790-4799.	2.3	42
67	A â€~clicked' macrocyclic probe incorporating Binol as the signalling unit for the chiroptical sensing of anions. Tetrahedron, 2012, 68, 7861-7866.	1.9	62
68	Synthesis and anion recognition properties of shape-persistent binaphthyl-containing chiral macrocyclic amides. Beilstein Journal of Organic Chemistry, 2012, 8, 967-976.	2.2	14
69	Synthesis, postâ€modification and characterization of linear polystyreneâ€based supports for interaction with immobilized biocatalysts. Polymer International, 2012, 61, 1611-1618.	3.1	12
70	Efficient crystallization induced emissive materials based on a simple push–pull molecular structure. Physical Chemistry Chemical Physics, 2011, 13, 18005.	2.8	56
71	Spectroscopic and electrochemical sensing of lanthanides with Ï∈-extended chromophores incorporating ferrocenes and a coordinative end. Dalton Transactions, 2011, 40, 11719.	3.3	22
72	Mild preparation of functionalized [2.2]paracyclophanes via the Pummerer rearrangement. Organic and Biomolecular Chemistry, 2011, 9, 5018.	2.8	26

#	Article	IF	CITATIONS
73	Fluorinated styrene-based monomers for cyclopolymerizations. Journal of Fluorine Chemistry, 2011, 132, 956-960.	1.7	5
74	Controlled RAFT Cyclopolymerization of Oriented Styrenic Difunctional Monomers. Macromolecular Chemistry and Physics, 2010, 211, 2254-2259.	2.2	23
75	Shape selectivity in the synthesis of chiral macrocyclic amides. Tetrahedron, 2010, 66, 4206-4211.	1.9	42
76	Tagging Molecules with Linear Polymers: Biocatalytic Transformation of Substrates Anchored on Soluble Macromolecules. Combinatorial Chemistry and High Throughput Screening, 2010, 13, 45-53.	1.1	5
77	Locked chromophores as CD and NMR probes for the helical conformation of tetraamidic macrocycles. Organic and Biomolecular Chemistry, 2010, 8, 1807.	2.8	27
78	Structurally-variable, rigid and optically-active D2 and D3 macrocycles possessing recognition properties towards C60. Organic and Biomolecular Chemistry, 2010, 8, 1640.	2.8	41
79	Nesting complexation of C60 with large, rigid D2 symmetrical macrocycles. Organic and Biomolecular Chemistry, 2010, 8, 3272.	2.8	48
80	Dynamic switching between binding sites in the complexation of macrocyclic â€~push–pull' chromophores to lanthanides. Tetrahedron, 2009, 65, 10436-10440.	1.9	10
81	Efficient Free-Radical Cyclopolymerization of Oriented Styrenic Difunctional Monomers. Macromolecules, 2009, 42, 1860-1866.	4.8	32
82	"Pushâ€pull―supramolecular chromophores supported on cyclopolymers. Journal of Polymer Science Part A, 2008, 46, 5202-5213.	2.3	40
83	Site-selective supramolecular synthesis of halogen-bonded cocrystals incorporating the photoactive azo group. CrystEngComm, 2008, 10, 1132.	2.6	38
84	Chemoselective Functionalization of 3,3′-Substituted BINOL Derivatives. Journal of Organic Chemistry, 2008, 73, 4237-4240.	3.2	24
85	Acentric Nanostructured Assembly as a Strategy for the Design of Organic Electrooptic Materials. The Open Condensed Matter Physics Journal, 2008, 1, 7-12.	0.2	0
86	Synthesis and Evaluation of Blends Formed by Polymeric Crown Ethers and a Fullereneâ€Containing Primary Ammonium Salt in Organic Thin Films. Fullerenes Nanotubes and Carbon Nanostructures, 2007, 15, 367-378.	2.1	1
87	Macrocycles as Precursors for Organic Nanotubes. Current Organic Synthesis, 2007, 4, 59-80.	1.3	72
88	A chiral probe for the detection of Cu(ii) by UV, CD and emission spectroscopies. Dalton Transactions, 2007, , 1588.	3.3	44
89	Linear recognition of dicarboxylates by ditopic macrocyclic complexes. New Journal of Chemistry, 2007, 31, 352.	2.8	41
90	Efficient Biocatalytic Cleavage and Recovery of Organic Substrates Supported on Soluble Polymers. Advanced Synthesis and Catalysis, 2007, 349, 971-978.	4.3	13

#	Article	IF	Citations
91	Synthetic pores with reactive signal amplifiers as artificial tongues. Nature Materials, 2007, 6, 576-580.	27.5	123
92	Synthesis and Structure Determination of 1, 4, 7, 11, 14, 17, 21, 24, 27-Nonaoxatriacontan-8, 10, 18, 20, 28, 30-Esaone. Journal of Chemical Crystallography, 2007, 37, 537-541.	1.1	1
93	Molecular Recognition by Synthetic Multifunctional Pores in Practice: Are Structural Studies Really Helpful?. Advanced Functional Materials, 2006, 16, 169-179.	14.9	45
94	Synthetic multifunctional pores that open and close in response to chemical stimulation. Bioorganic and Medicinal Chemistry, 2005, 13, 5171-5180.	3.0	41
95	Synthesis and Solubility Properties of Methanofullerenes Containing Primary Ammonium Ion Functionalities. European Journal of Organic Chemistry, 2005, 2005, 4322-4327.	2.4	5
96	The depth of molecular recognition: voltage-sensitive blockage of synthetic multifunctional pores with refined architecture. Chemical Communications, 2005, , 4798.	4.1	24
97	Rigid Optically-Active D2 and D3 Macrocycles ChemInform, 2004, 35, no.	0.0	0
98	C2 Symmetrical double chromophores: cooperativity effects in lanthanide ion complexationElectronic supplementary information (ESI) available: chemical shifts for diastereoisomeric pairs 4/5 in C6D6 solutions (300 MHz). See http://www.rsc.org/suppdata/ob/b4/b403494e/. Organic and Biomolecular Chemistry, 2004, 2, 1764.	2.8	8
99	Thermal and conductivity properties of poly(ethylene glycol)-based cyclopolymersElectronic supplementary information (ESI) available: 1H NMR spectra and gel permeation chromatography traces of polymers 4, 5a and 6 after purification by precipitation in the non-solvent. See http://www.rsc.org/suppdata/im/b4/b402677b/. lournal of Materials Chemistry, 2004, 14, 2524.	6.7	11
100	Supramolecular self-assembly of fibres. Current Opinion in Solid State and Materials Science, 2004, 8, 157-163.	11.5	13
101	Methanofullerenes from Macrocyclic Malonates. European Journal of Organic Chemistry, 2003, 2003, 374-384.	2.4	16
102	Fullerene Ylidene Malonate Supramolecular Triads ChemInform, 2003, 34, no-no.	0.0	0
103	Cyclopolymers as Liquid Membrane Carriers. Macromolecules, 2003, 36, 8894-8897.	4.8	20
104	Rigid optically-active D2and D3macrocycles. Organic and Biomolecular Chemistry, 2003, 1, 3261-3262.	2.8	14
105	Malonate Crown Ethers as Building Blocks for Novel D-Ï€-A Chromophores. Organic Letters, 2002, 4, 23-26.	4.6	40
106	Fullerene Ylidene Malonate Supramolecular Triads. European Journal of Organic Chemistry, 2002, 2002, 3385-3392.	2.4	26
107	A soluble polymer-bound Evans' chiral auxiliary: synthesis, characterization and use in cycloaddition reactions. Tetrahedron: Asymmetry, 2002, 13, 333-337.	1.8	37
108	Design, Synthesis, and Characterization of Carbon-Rich Cyclopolymers for 193 nm Microlithography. Chemistry of Materials, 2001, 13, 4136-4146.	6.7	39

#	Article	IF	CITATIONS
109	Microlithographic Assessment of a Novel Family of Transparent and Etch-Resistant Chemically Amplified 193-nm Resists Based on Cyclopolymers. Chemistry of Materials, 2001, 13, 4147-4153.	6.7	39
110	Structurally variable cyclopolymers with excellent etch resistance and their application to 193-nm lithography., 2000, 3999, 23.		0
111	Novel Design of Carbon-Rich Polymers for 193 nm Microlithography: Adamantane-Containing Cyclopolymers. Advanced Materials, 2000, 12, 347-351.	21.0	23
112	Design of photoresists with reduced environmental impact. II. Water-soluble resists based on photocrosslinking of poly(2-isopropenyl-2-oxazoline). Journal of Polymer Science Part A, 1999, 37, 1225-1236.	2.3	32
113	Diastereoselective Self-Assembly of [2]Catenanes. European Journal of Organic Chemistry, 1999, 1999, 995-1004.	2.4	38
114	Unique polymers via radical diene cyclization: polyspironorbornanes and their application to 193 nm microlithography. Chemical Communications, 1999, , 1587-1588.	4.1	10
115	Carbon-rich cyclopolymers: their synthesis, etch resistance, and application to 193-nm microlithography. , 1999, 3678, 94.		1
116	Novel Organic Resists for Nanoscale Imaging. From Chemically Amplified Cycloaliphatic Resists to Dendrimer Monolayer Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1999, 12, 405-416.	0.3	5
117	Enantioselective Discrimination in the Self-Assembly of [2]Pseudorotaxanes. European Journal of Organic Chemistry, 1998, 1998, 983-986.	2.4	18
118	Self-Assembling Cyclophanes and Catenanes Possessing Elements of Planar Chirality. Chemistry - A European Journal, 1998, 4, 299-310.	3.3	45
119	Cyclophanes and [2]Catenanes as Ligands for Transition Metal Complexes: Synthesis, Structure, Absorption Spectra, and Excited State and Electrochemical Properties. Chemistry - A European Journal, 1998, 4, 590-607.	3.3	64
120	Constitutionally Asymmetric and Chiral [2]Pseudorotaxanes1. Journal of the American Chemical Society, 1998, 120, 920-931.	13.7	57
121	Design and study of water-soluble positive- and negative-tone imaging materials. , 1998, , .		1
122	Design and Preliminary Studies of Environmentally Enhanced Water-Castable, Water-Developable Positive Tone Resists: Model and Feasibility Studies. ACS Symposium Series, 1998, , 262-275.	0.5	2
123	Positive- and negative-tone water-processable photoresists: a progress report. , 1998, 3333, 245.		5
124	Design of a positive-tone water-soluble resist. , 1997, 3049, 437.		3
125	Molecular and Supramolecular Synthesis with Dibenzofuranâ€Containing Systems. Chemistry - A European Journal, 1997, 3, 1136-1150.	3.3	45
126	Axially Chiral Catenanes and Ï€â€Electronâ€Deficient Receptors. Chemistry - A European Journal, 1997, 3, 463-481.	3.3	45

DARIO PASINI

#	Article	IF	CITATION
127	Enantioselective Recognition of Amino Acids by Axially-Chiral π-Electron-Deficient Receptors. Journal of Organic Chemistry, 1996, 61, 7234-7235.	3.2	45
128	Chromatography of Mechanically Interlocked Molecular Compounds. Analytical Chemistry, 1996, 68, 3879-3881.	6.5	4
129	Solvent effect as the result of frontier molecular orbital interaction. VII. The retro-diels-alder reaction Tetrahedron, 1992, 48, 1667-1674.	1.9	34