Wei-Di Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/6353667/wei-di-liu-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

72 2,258 27 46 g-index

76 3,211 12.7 5.84 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
72	Flexible Carbon-Fiber/Semimetal Bi Nanosheet Arrays as Separable and Recyclable Plasmonic Photocatalysts and Photoelectrocatalysts. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 24845-248	3 54 ·5	123
71	Arrays of Planar Vacancies in Superior Thermoelectric Ge1 LQCdxBiyTe with Band Convergence. <i>Advanced Energy Materials</i> , 2018 , 8, 1801837	21.8	116
70	High Thermoelectric Performance in p-type Polycrystalline Cd-doped SnSe Achieved by a Combination of Cation Vacancies and Localized Lattice Engineering. <i>Advanced Energy Materials</i> , 2019 , 9, 1803242	21.8	99
69	Polycrystalline SnSe with Extraordinary Thermoelectric Property via Nanoporous Design. <i>ACS Nano</i> , 2018 , 12, 11417-11425	16.7	98
68	High-Performance GeTe-Based Thermoelectrics: from Materials to Devices. <i>Advanced Energy Materials</i> , 2020 , 10, 2000367	21.8	94
67	Promising and Eco-Friendly Cu X-Based Thermoelectric Materials: Progress and Applications. <i>Advanced Materials</i> , 2020 , 32, e1905703	24	92
66	Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe inducing intensive crystal imperfections and defect phonon scattering. <i>Chemical Science</i> , 2018 , 9, 7376-7389	9.4	91
65	Eco-Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges. <i>Advanced Energy Materials</i> , 2018 , 8, 1800056	21.8	90
64	Realizing High Thermoelectric Performance in n-Type Highly Distorted Sb-Doped SnSe Microplates via Tuning High Electron Concentration and Inducing Intensive Crystal Defects. <i>Advanced Energy Materials</i> , 2018 , 8, 1800775	21.8	86
63	Thermoelectric Generators: Alternative Power Supply for Wearable Electrocardiographic Systems. <i>Advanced Science</i> , 2020 , 7, 2001362	13.6	84
62	Achieving high Figure of Merit in p-type polycrystalline Sn0.98Se via self-doping and anisotropy-strengthening. <i>Energy Storage Materials</i> , 2018 , 10, 130-138	19.4	79
61	Texture-dependent thermoelectric properties of nano-structured Bi2Te3. <i>Chemical Engineering Journal</i> , 2020 , 388, 124295	14.7	72
60	Realizing high thermoelectric properties of SnTe via synergistic band engineering and structure engineering. <i>Nano Energy</i> , 2019 , 65, 104056	17.1	70
59	Bi0.5Sb1.5Te3/PEDOT:PSS-based flexible thermoelectric film and device. <i>Chemical Engineering Journal</i> , 2020 , 397, 125360	14.7	66
58	Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction. <i>Chemical Engineering Journal</i> , 2020 , 391, 123513	14.7	58
57	Cu2Se thermoelectrics: property, methodology, and device. <i>Nano Today</i> , 2020 , 35, 100938	17.9	57
56	High Porosity in Nanostructured -Type BiTe Obtaining Ultralow Lattice Thermal Conductivity. <i>ACS Applied Materials & Discrete Applied & Discrete Applied Materials & Discrete Applied & Discret</i>	9.5	50

(2018-2021)

55	Carbon allotrope hybrids advance thermoelectric development and applications. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 141, 110800	16.2	46	
54	Rational band engineering and structural manipulations inducing high thermoelectric performance in n-type CoSb3 thin films. <i>Nano Energy</i> , 2021 , 81, 105683	17.1	42	
53	High-Temperature Shock Enabled Nanomanufacturing for Energy-Related Applications. <i>Advanced Energy Materials</i> , 2020 , 10, 2001331	21.8	41	
52	Ag doping induced abnormal lattice thermal conductivity in Cu2Se. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 13225-13231	7.1	40	
51	Anisotropy Controllhduced Unique Anisotropic Thermoelectric Performance in the n-Type Bi2Te2.7Se0.3 Thin Films. <i>Small Methods</i> , 2019 , 3, 1900582	12.8	38	
50	Two-dimensional WSe2/SnSe p-n junctions secure ultrahigh thermoelectric performance in n-type Pb/I Co-doped polycrystalline SnSe. <i>Materials Today Physics</i> , 2021 , 16, 100306	8	34	
49	Enhancing Thermoelectric Properties of InTe Nanoprecipitate-Embedded Sn1IdnxTe Microcrystals through Anharmonicity and Strain Engineering. <i>ACS Applied Energy Materials</i> , 2019 , 2, 2965-2971	6.1	31	
48	Optimization of sodium hydroxide for securing high thermoelectric performance in polycrystalline Sn1 IkSe via anisotropy and vacancy synergy. <i>Informal</i> Materilly, 2020 , 2, 1201-1215	23.1	31	
47	Hierarchical Structures Advance Thermoelectric Properties of Porous n-type EAgSe. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS A</i>	9.5	29	
46	Super Large SnSe Single Crystals with Excellent Thermoelectric Performance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 8051-8059	9.5	27	
45	High Thermoelectric Performance in Sintered Octahedron-Shaped Sn(CdIn) Te Microcrystals. <i>ACS Applied Materials & Discourse Material</i>	9.5	27	
44	Synergistic effect approaching record-high figure of merit in the shear exfoliated n-type Bi2O2-2xTe2xSe. <i>Nano Energy</i> , 2020 , 69, 104394	17.1	24	
43	Carbon-Encapsulated Copper Sulfide Leading to Enhanced Thermoelectric Properties. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & A</i>	9.5	22	
42	- Observation of the Continuous Phase Transition in Determining the High Thermoelectric Performance of Polycrystalline SnSe. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 6512-6517	6.4	22	
41	Solvothermal synthesis of high-purity porous Cu1.7Se approaching low lattice thermal conductivity. <i>Chemical Engineering Journal</i> , 2019 , 375, 121996	14.7	21	
40	Potassium-based electrochemical energy storage devices: Development status and future prospect. <i>Energy Storage Materials</i> , 2021 , 34, 85-106	19.4	21	
39	Kinetic condition driven phase and vacancy enhancing thermoelectric performance of low-cost and eco-friendly Cu2⊠S. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 5366-5373	7.1	20	
38	Enhancing thermoelectric performance of (Cu1-xAgx)2Se via CuAgSe secondary phase and porous design. <i>Sustainable Materials and Technologies</i> , 2018 , 17, e00076	5.3	20	

37	Outstanding thermoelectric properties of solvothermal-synthesized Sn1BxInxAg2xTe micro-crystals through defect engineering and band tuning. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3978-3987	13	19
36	Versatile Vanadium Doping Induces High Thermoelectric Performance in GeTe via Band Alignment and Structural Modulation. <i>Advanced Energy Materials</i> , 2021 , 11, 2100544	21.8	18
35	Novel Thermal Diffusion Temperature Engineering Leading to High Thermoelectric Performance in Bi Te -Based Flexible Thin-Films <i>Advanced Science</i> , 2021 , e2103547	13.6	17
34	Nanomanufacturing of RGO-CNT Hybrid Film for Flexible Aqueous Al-Ion Batteries. <i>Small</i> , 2020 , 16, e200	0 <u>2</u> 856	17
33	Rational Electronic and Structural Designs Advance BiCuSeO Thermoelectrics. <i>Advanced Functional Materials</i> , 2021 , 31, 2101289	15.6	17
32	High Carrier Mobility and High Figure of Merit in the CuBiSe2 Alloyed GeTe. <i>Advanced Energy Materials</i> , 2021 , 11, 2102913	21.8	16
31	Multifunctional Wearable Thermoelectrics for Personal Thermal Management. <i>Advanced Functional Materials</i> ,2200548	15.6	15
30	Effect of Microwave Treatment Upon Processing Oolitic High Phosphorus Iron Ore for Phosphorus Removal. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2014 , 45, 1683-1694	2.5	14
29	A synergy of strain loading and laser radiation in determining the high-performing electrical transports in the single Cu-doped SnSe microbelt. <i>Materials Today Physics</i> , 2020 , 13, 100198	8	13
28	Morphology and Texture Engineering Enhancing Thermoelectric Performance of Solvothermal Synthesized Ultralarge SnS Microcrystal. <i>ACS Applied Energy Materials</i> , 2020 , 3, 2192-2199	6.1	12
27	Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe. Journal of Materials Science and Technology, 2021 , 86, 204-209	9.1	12
26	In situ crystal-amorphous compositing inducing ultrahigh thermoelectric performance of p-type Bi0.5Sb1.5Te3 hybrid thin films. <i>Nano Energy</i> , 2020 , 78, 105379	17.1	10
25	Synergistic Texturing and Bi/Sb-Te Antisite Doping Secure High Thermoelectric Performance in Bi0.5Sb1.5Te3-Based Thin Films. <i>Advanced Energy Materials</i> , 2021 , 11, 2102578	21.8	10
24	Two-dimensional flexible thermoelectric devices: Using modeling to deliver optimal capability. <i>Applied Physics Reviews</i> , 2021 , 8, 041404	17.3	9
23	Double perovskite Pr2CoFeO6 thermoelectric oxide: Roles of Sr-doping and Micro/nanostructuring. <i>Chemical Engineering Journal</i> , 2021 , 425, 130668	14.7	9
22	Simultaneously achieving high ZT and mechanical hardness in highly alloyed GeTe with symmetric nanodomains. <i>Chemical Engineering Journal</i> , 2022 , 441, 136131	14.7	9
21	Ultrafast Porous Carbon Activation Promises High-Energy Density Supercapacitors Small, 2022, e22009	954	8
20	Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te. <i>Journal of Materials Science and Technology</i> , 2022 , 106, 249-256	9.1	7

(2021-2019)

19	Vapour-solid growth of MoxW1-xTe2 nanobelts by a facile chemical vapour deposition method. Journal of Alloys and Compounds, 2019 , 777, 926-930	5.7	7
18	Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization. <i>Nano Energy</i> , 2021 , 87, 106171	17.1	7
17	Thermoelectric coolers: Infinite potentials for finite localized microchip cooling. <i>Journal of Materials Science and Technology</i> , 2022 , 121, 256-262	9.1	7
16	Effectively restricting MnSi precipitates for simultaneously enhancing the Seebeck coefficient and electrical conductivity in higher manganese silicide. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 7212-7218	3 ^{7.1}	6
15	High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes. <i>Journal of Materials Science and Technology</i> , 2022 , 114, 55-61	9.1	5
14	A Survey of Artificial Intelligence Techniques Applied in Energy Storage Materials R&D. <i>Frontiers in Energy Research</i> , 2020 , 8,	3.8	4
13	High near-room temperature figure of merit of n-type Bi2GeTe4-based thermoelectric materials via a stepwise optimization of carrier concentration. <i>Chemical Engineering Journal</i> , 2021 , 133775	14.7	4
12	Rare-Earth Nd Inducing Record-High Thermoelectric Performance of (GeTe)85(AgSbTe2)15. <i>Energy Material Advances</i> , 2021 , 2021, 1-8	1	4
11	Simultaneously optimized thermoelectric performance of n-type Cu2Se alloyed Bi2Te3. <i>Journal of Solid State Chemistry</i> , 2021 , 296, 121987	3.3	4
10	Development Status and Prospects of Artificial Intelligence in the Field of Energy Conversion Materials. <i>Frontiers in Energy Research</i> , 2020 , 8,	3.8	3
9	Scalable waste-plastic-derived carbon nanosheets with high contents of inbuilt nitrogen/sulfur sites for high performance potassium-ion hybrid capacitors. <i>Nano Energy</i> , 2022 , 95, 107015	17.1	2
8	Dual-function engineering to construct ultra-stable anodes for potassium-ion hybrid capacitors: N, O-doped porous carbon spheres. <i>Nano Energy</i> , 2022 , 93, 106903	17.1	2
7	A Solvothermal Synthetic Environmental Design for High-Performance SnSe-Based Thermoelectric Materials. <i>Advanced Energy Materials</i> ,2200670	21.8	2
6	Synergistic Effect of Band and Nanostructure Engineering on the Boosted Thermoelectric Performance of n-Type Mg 3+ [Sb, Bi) 2 Zintls. <i>Advanced Energy Materials</i> ,2201086	21.8	2
5	Cheap, Large-Scale, and High-Performance Graphite-Based Flexible Thermoelectric Materials and Devices with Supernormal Industry Feasibility <i>ACS Applied Materials & Devices Materials &</i>	9.5	1
4	Achieving high thermoelectric properties in PEDOT:PSS/SWCNTs composite films by a combination of dimethyl sulfoxide doping and NaBH4 dedoping. <i>Carbon</i> , 2022 , 196, 718-726	10.4	1
3	The effect of rare earth element doping on thermoelectric properties of GeTe. <i>Chemical Engineering Journal</i> , 2022 , 446, 137278	14.7	1
2	Impurity Removal Leading to High-Performance CoSb-Based Skutterudites with Synergistic Carrier Concentration Optimization and Thermal Conductivity Reduction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 54185-54193	9.5	O

Thermo-Responsive Nanomaterials for Thermoelectric Generation. *Springer Series in Materials Science*, **2020**, 269-293

0.9