Roland Malli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/635355/publications.pdf Version: 2024-02-01

		57758	32842
127	10,747	44	100
papers	citations	h-index	g-index
120	120	120	20885
139	139	139	20003
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism. Science Advances, 2022, 8, eabh2635.	10.3	35
2	Citrin mediated metabolic rewiring in response to altered basal subcellular Ca2+ homeostasis. Communications Biology, 2022, 5, 76.	4.4	6
3	Light Stimulation of Neurons on Organic Photocapacitors Induces Action Potentials with Millisecond Precision. Advanced Materials Technologies, 2022, 7, .	5.8	7
4	Nitric oxide biosensor uncovers diminished ferrous iron-dependency of cultured cells adapted to physiological oxygen levels. Redox Biology, 2022, 53, 102319.	9.0	7
5	Sigma-1 Receptor Modulation by Ligands Coordinates Cancer Cell Energy Metabolism. Biomolecules, 2022, 12, 762.	4.0	4
6	MICU1 controls spatial membrane potential gradients and guides Ca2+ fluxes within mitochondrial substructures. Communications Biology, 2022, 5, .	4.4	11
7	Assessment of Mitochondrial Ca2+ Uptake. Methods in Molecular Biology, 2021, 2276, 173-191.	0.9	0
8	Dynamic Control of Mitochondrial Ca2+ Levels as a Survival Strategy of Cancer Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 614668.	3.7	18
9	Slack K ⁺ channels attenuate NMDAâ€induced excitotoxic brain damage and neuronal cell death. FASEB Journal, 2021, 35, e21568.	0.5	16
10	Potassium ions promote hexokinase-II dependent glycolysis. IScience, 2021, 24, 102346.	4.1	12
11	Sigma-1 Receptor Promotes Mitochondrial Bioenergetics by Orchestrating ER Ca2+ Leak during Early ER Stress. Metabolites, 2021, 11, 422.	2.9	16
12	Near-UV Light Induced ROS Production Initiates Spatial Ca2+ Spiking to Fire NFATc3 Translocation. International Journal of Molecular Sciences, 2021, 22, 8189.	4.1	6
13	A Co-Culture-Based Multiparametric Imaging Technique to Dissect Local H2O2 Signals with Targeted HyPer7. Biosensors, 2021, 11, 338.	4.7	7
14	Unveiling the K+-sensitivity of cell metabolism using genetically encoded, FRET-based K+, glucose, and ATP biosensors. STAR Protocols, 2021, 2, 100843.	1.2	2
15	ALG-2 and peflin regulate COPII targeting and secretion in response to calcium signaling. Journal of Biological Chemistry, 2021, 297, 101393.	3.4	11
16	Investigating the K+ sensitivity of cellular metabolism by extracellular flux analysis. STAR Protocols, 2021, 2, 100876.	1.2	4
17	Immobilization of Recombinant Fluorescent Biosensors Permits Imaging of Extracellular Ion Signals. ACS Sensors, 2021, 6, 3994-4000.	7.8	10
18	Endothelial lipase increases eNOS activating capacity of high-density lipoprotein. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158612.	2.4	8

Roland Malli

#	Article	IF	CITATIONS
19	Metabolic Profiling of Single Cancer Cells Using Mitochondrial ATP Probes. STAR Protocols, 2020, 1, 100048.	1.2	1
20	Fatty acids as biomimetic replication agents for luminescent metal–organic framework patterns. Chemical Communications, 2020, 56, 12733-12736.	4.1	4
21	Pharmaco-Optogenetic Targeting of TRPC Activity Allows for Precise Control Over Mast Cell NFAT Signaling. Frontiers in Immunology, 2020, 11, 613194.	4.8	0
22	The contribution of uncoupling protein 2 to mitochondrial Ca2+ homeostasis in health and disease – A short revisit. Mitochondrion, 2020, 55, 164-173.	3.4	15
23	ER-to-Golgi Transport in HeLa Cells Displays High Resilience to Ca2+ and Energy Stresses. Cells, 2020, 9, 2311.	4.1	9
24	The ER chaperone calnexin controls mitochondrial positioning and respiration. Science Signaling, 2020, 13, .	3.6	32
25	TRIC-A shapes oscillatory Ca2+ signals by interaction with STIM1/Orai1 complexes. PLoS Biology, 2020, 18, e3000700.	5.6	12
26	Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function. ELife, 2020, 9, .	6.0	108
27	Yes (again) to local NO. Nature Chemical Biology, 2020, 16, 606-607.	8.0	0
28	Tracking intra―and interâ€organelle signaling of mitochondria. FEBS Journal, 2019, 286, 4378-4401.	4.7	23
29	Glycogen Synthase Kinase 3 Beta Controls Presenilin-1-Mediated Endoplasmic Reticulum Ca2+ Leak Directed to Mitochondria in Pancreatic Islets and beta-Cells. Cellular Physiology and Biochemistry, 2019, 52, 57-75.	1.6	25
30	MICU1 controls cristae junction and spatially anchors mitochondrial Ca2+ uniporter complex. Nature Communications, 2019, 10, 3732.	12.8	90
31	Development and Application of Sub-Mitochondrial Targeted Ca2 + Biosensors. Frontiers in Cellular Neuroscience, 2019, 13, 449.	3.7	11
32	Live cell imaging of signaling and metabolic activities. , 2019, 202, 98-119.		41
33	Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells, 2019, 8, 492.	4.1	71
34	IRE1α modulates ER and mitochondria crosstalk. Nature Cell Biology, 2019, 21, 667-668.	10.3	17
35	pH-Lemon, a Fluorescent Protein-Based pH Reporter for Acidic Compartments. ACS Sensors, 2019, 4, 883-891.	7.8	99
36	Calcium Signaling in ß-cell Physiology and Pathology: A Revisit. International Journal of Molecular Sciences, 2019, 20, 6110.	4.1	56

#	Article	IF	CITATIONS
37	Visualization of Sirtuin 4 Distribution between Mitochondria and the Nucleus, Based on Bimolecular Fluorescence Self-Complementation. Cells, 2019, 8, 1583.	4.1	20
38	Enhanced inter-compartmental Ca2+ flux modulates mitochondrial metabolism and apoptotic threshold during aging. Redox Biology, 2019, 20, 458-466.	9.0	50
39	The enigmatic ATP supply of the endoplasmic reticulum. Biological Reviews, 2019, 94, 610-628.	10.4	38
40	Presenilin-1 Established ER-Ca2+ Leak: a Follow Up on Its Importance for the Initial Insulin Secretion in Pancreatic Islets and β-Cells Upon Elevated Glucose. Cellular Physiology and Biochemistry, 2019, 53, 573-586.	1.6	15
41	Mitochondria supply ATP to the ER through a mechanism antagonized by cytosolic Ca2+. ELife, 2019, 8, .	6.0	51
42	2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells. Redox Biology, 2018, 15, 441-451.	9.0	28
43	Real-Time Imaging of Nitric Oxide Signals in Individual Cells Using geNOps. Methods in Molecular Biology, 2018, 1747, 23-34.	0.9	8
44	Genetic biosensors for imaging nitric oxide in single cells. Free Radical Biology and Medicine, 2018, 128, 50-58.	2.9	36
45	Sustained Formation of Nitroglycerin-Derived Nitric Oxide by Aldehyde Dehydrogenase-2 in Vascular Smooth Muscle without Added Reductants: Implications for the Development of Nitrate Tolerance. Molecular Pharmacology, 2018, 93, 335-343.	2.3	7
46	Intracellular Ca2+ release decelerates mitochondrial cristae dynamics within the junctions to the endoplasmic reticulum. Pflugers Archiv European Journal of Physiology, 2018, 470, 1193-1203.	2.8	24
47	FP017IMPAIRED MITOCHONDRIALCALCIUM UPTAKE AND DAMAGED MITOCHONDRIAL STRUCTURE IN PODOCYTES EXPOSED TO HIGH-GLUCOSE. Nephrology Dialysis Transplantation, 2018, 33, i54-i54.	0.7	0
48	Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells. Cell Reports, 2018, 25, 501-512.e3.	6.4	91
49	High-Resolution Imaging of STIM/Orai Subcellular Localization Using Array Confocal Laser Scanning Microscopy. Methods in Molecular Biology, 2018, 1843, 175-187.	0.9	1
50	Targeting Mitochondria to Counteract Age-Related Cellular Dysfunction. Genes, 2018, 9, 165.	2.4	40
51	Na +/Ca2+ exchangers and Orai channels jointly refill endoplasmic reticulum (ER) Ca2+ via ER nanojunctions in vascular endothelial cells. Pflugers Archiv European Journal of Physiology, 2017, 469, 1287-1299.	2.8	17
52	Intact mitochondrial Ca 2+ uniport is essential for agonist-induced activation of endothelial nitric oxide synthase (eNOS). Free Radical Biology and Medicine, 2017, 102, 248-259.	2.9	28
53	Application of Genetically Encoded Fluorescent Nitric Oxide (NO•) Probes, the geNOps, for Real-time Imaging of NO• Signals in Single Cells. Journal of Visualized Experiments, 2017, , . ——————————————————————————————————	0.3	16
54	Real-time visualization of distinct nitric oxide generation of nitric oxide synthase isoforms in single cells. Nitric Oxide - Biology and Chemistry, 2017, 70, 59-67.	2.7	22

#	Article	IF	CITATIONS
55	The Role of Mitochondria in the Activation/Maintenance of SOCE: The Contribution of Mitochondrial Ca2+ Uptake, Mitochondrial Motility, and Location to Store-Operated Ca2+ Entry. Advances in Experimental Medicine and Biology, 2017, 993, 297-319.	1.6	16
56	Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nature Communications, 2017, 8, 1422.	12.8	130
57	UCP2 and PRMT1 are key prognostic markers for lung carcinoma patients. Oncotarget, 2017, 8, 80278-80285.	1.8	20
58	Development of novel FP-based probes for live-cell imaging of nitric oxide dynamics. Nature Communications, 2016, 7, 10623.	12.8	84
59	Resveratrol Specifically Kills Cancer Cells by a Devastating Increase in the Ca2+ Coupling Between the Greatly Tethered Endoplasmic Reticulum and Mitochondria. Cellular Physiology and Biochemistry, 2016, 39, 1404-1420.	1.6	84
60	Formation of Nitric Oxide by Aldehyde Dehydrogenase-2 Is Necessary and Sufficient for Vascular Bioactivation of Nitroglycerin. Journal of Biological Chemistry, 2016, 291, 24076-24084.	3.4	31
61	PRMT1-mediated methylation of MICU1 determines the UCP2/3 dependency of mitochondrial Ca2+ uptake in immortalized cells. Nature Communications, 2016, 7, 12897.	12.8	59
62	Filling a GAP—An Optimized Probe for ER Ca 2+ Imaging InÂVivo. Cell Chemical Biology, 2016, 23, 641-643.	5.2	2
63	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
64	Rearrangement of MICU1 multimers for activation of MCU is solely controlled by cytosolic Ca2+. Scientific Reports, 2015, 5, 15602.	3.3	45
65	Generation of Red-Shifted Cameleons for Imaging Ca2+ Dynamics of the Endoplasmic Reticulum. Sensors, 2015, 15, 13052-13068.	3.8	26
66	UCP2 modulates single-channel properties of a MCU-dependent Ca2+ inward current in mitochondria. Pflugers Archiv European Journal of Physiology, 2015, 467, 2509-2518.	2.8	28
67	Assessment of Mitochondrial Ca2+ Uptake. Methods in Molecular Biology, 2015, 1264, 421-439.	0.9	4
68	Oleoyl-Lysophosphatidylcholine Limits Endothelial Nitric Oxide Bioavailability by Induction of Reactive Oxygen Species. PLoS ONE, 2014, 9, e113443.	2.5	16
69	Adaptations of Energy Metabolism Associated with Increased Levels of Mitochondrial Cholesterol in Niemann-Pick Type C1-deficient Cells. Journal of Biological Chemistry, 2014, 289, 16278-16289.	3.4	65
70	TRPV1 mediates cellular uptake of anandamide and thus promotes endothelial cell proliferation and network-formation. Biology Open, 2014, 3, 1164-1172.	1.2	43
71	Characterization of rat serum amyloid A4 (SAA4): A novel member of the SAA superfamily. Biochemical and Biophysical Research Communications, 2014, 450, 1643-1649.	2.1	11
72	ATP increases within the lumen of the endoplasmic reticulum upon intracellular Ca ²⁺ release. Molecular Biology of the Cell, 2014, 25, 368-379.	2.1	65

Roland Malli

#	Article	IF	CITATIONS
73	Mitochondrial Ca2+ uniporter (MCU)-dependent and MCU-independent Ca2+ channels coexist in the inner mitochondrial membrane. Pflugers Archiv European Journal of Physiology, 2014, 466, 1411-1420.	2.8	29
74	Inositol-1,4,5-trisphosphate (IP3)-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake. Journal of Cell Science, 2014, 127, 2944-55.	2.0	50
75	The endocannabinoid N-arachidonoyl glycine (NAGly) inhibits store-operated Ca2+ entry by abrogating STIM1/Orai1 interaction. Journal of Cell Science, 2013, 126, 879-88.	2.0	23
76	Characterization of distinct single-channel properties of Ca2+ inward currents in mitochondria. Pflugers Archiv European Journal of Physiology, 2013, 465, 997-1010.	2.8	37
77	N â€arachidonoyl glycine suppresses Na + / Ca 2+ exchangerâ€mediated Ca 2+ entry into endothelial cells and activates BK Ca channels ind. British Journal of Pharmacology, 2013, 169, 933-948.	5.4	25
78	Molecularly Distinct Routes of Mitochondrial Ca2+ Uptake Are Activated Depending on the Activity of the Sarco/Endoplasmic Reticulum Ca2+ ATPase (SERCA). Journal of Biological Chemistry, 2013, 288, 15367-15379.	3.4	34
79	Mitochondrial Ca2+ uptake 1 (MICU1) and mitochondrial Ca2+ uniporter (MCU) contribute to metabolism-secretion coupling in clonal pancreatic β-cells Journal of Biological Chemistry, 2012, 287, 42453.	3.4	2
80	Inhibition of Autophagy Rescues Palmitic Acid-induced Necroptosis of Endothelial Cells. Journal of Biological Chemistry, 2012, 287, 21110-21120.	3.4	118
81	Mitochondrial Ca2+ Uptake 1 (MICU1) and Mitochondrial Ca2+ Uniporter (MCU) Contribute to Metabolism-Secretion Coupling in Clonal Pancreatic β-Cells. Journal of Biological Chemistry, 2012, 287, 34445-34454.	3.4	120
82	Acyl chain-dependent effect of lysophosphatidylcholine on cyclooxygenase (COX)-2 expression in endothelial cells. Atherosclerosis, 2012, 224, 348-354.	0.8	35
83	The vascular barrier-protecting hawthorn extract WS® 1442 raises endothelial calcium levels by inhibition of SERCA and activation of the IP3 pathway. Journal of Molecular and Cellular Cardiology, 2012, 53, 567-577.	1.9	18
84	Spatiotemporal Correlations between Cytosolic and Mitochondrial Ca2+ Signals Using a Novel Red-Shifted Mitochondrial Targeted Cameleon. PLoS ONE, 2012, 7, e45917.	2.5	41
85	Endothelial mitochondria—less respiration, more integration. Pflugers Archiv European Journal of Physiology, 2012, 464, 63-76.	2.8	96
86	The Role of Mitochondria in the Activation/Maintenance of SOCE. , 2012, , 211-229.		0
87	Mutation in NSUN2, which Encodes an RNA Methyltransferase, Causes Autosomal-Recessive Intellectual Disability. American Journal of Human Genetics, 2012, 90, 856-863.	6.2	189
88	Docosahexaenoic acid-induced unfolded protein response, cell cycle arrest, and apoptosis in vascular smooth muscle cells are triggered by Ca2+-dependent induction of oxidative stress. Free Radical Biology and Medicine, 2012, 52, 1786-1795.	2.9	35
89	Studying mitochondrial Ca2+ uptake – A revisit. Molecular and Cellular Endocrinology, 2012, 353, 114-127.	3.2	48
90	The GPR55 agonist lysophosphatidylinositol directly activates intermediate-conductance Ca2+-activated K+ channels. Pflugers Archiv European Journal of Physiology, 2011, 462, 245-255.	2.8	33

#	Article	IF	CITATIONS
91	Triacylglycerol Accumulation Activates the Mitochondrial Apoptosis Pathway in Macrophages. Journal of Biological Chemistry, 2011, 286, 7418-7428.	3.4	66
92	Sequential Synthesis and Methylation of Phosphatidylethanolamine Promote Lipid Droplet Biosynthesis and Stability in Tissue Culture and in Vivo. Journal of Biological Chemistry, 2011, 286, 17338-17350.	3.4	91
93	Leucine Zipper EF Hand-containing Transmembrane Protein 1 (Letm1) and Uncoupling Proteins 2 and 3 (UCP2/3) Contribute to Two Distinct Mitochondrial Ca2+ Uptake Pathways. Journal of Biological Chemistry, 2011, 286, 28444-28455.	3.4	86
94	The contribution of UCP2 and UCP3 to mitochondrial Ca2+ uptake is differentially determined by the source of supplied Ca2+. Cell Calcium, 2010, 47, 433-440.	2.4	59
95	Uncoupling protein 3 adjusts mitochondrial Ca2+ uptake to high and low Ca2+ signals. Cell Calcium, 2010, 48, 288-301.	2.4	30
96	Mitochondrial Ca ²⁺ channels: Great unknowns with important functions. FEBS Letters, 2010, 584, 1942-1947.	2.8	38
97	Lysophosphatidic acid receptor activation affects the C13NJ microglia cell line proteome leading to alterations in glycolysis, motility, and cytoskeletal architecture. Proteomics, 2010, 10, 141-158.	2.2	65
98	GPR55â€dependent and â€independent ion signalling in response to lysophosphatidylinositol in endothelial cells. British Journal of Pharmacology, 2010, 161, 308-320.	5.4	59
99	Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. Journal of Cell Science, 2010, 123, 2553-2564.	2.0	76
100	Vesicular Calcium Regulates Coat Retention, Fusogenicity, and Size of Pre-Golgi Intermediates. Molecular Biology of the Cell, 2010, 21, 1033-1046.	2.1	52
101	Acyl chain-dependent effect of lysophosphatidylcholine on endothelial prostacyclin production. Journal of Lipid Research, 2010, 51, 2957-2966.	4.2	47
102	Mitochondrial protein phosphorylation: instigator or target of lipotoxicity?. Trends in Endocrinology and Metabolism, 2009, 20, 186-193.	7.1	23
103	UCP2/3 — likely to be fundamental for mitochondrial Ca2+ uniport. Nature Cell Biology, 2008, 10, 1237-1240.	10.3	53
104	Mitochondrial Ca2+, the secret behind the function of uncoupling proteins 2 and 3?. Cell Calcium, 2008, 44, 36-50.	2.4	58
105	The C-terminal Region of Human Adipose Triglyceride Lipase Affects Enzyme Activity and Lipid Droplet Binding. Journal of Biological Chemistry, 2008, 283, 17211-17220.	3.4	133
106	Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. Journal of Cell Science, 2008, 121, 1704-1717.	2.0	160
107	Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. Journal of Cell Science, 2008, 121, 3133-3139.	2.0	62
108	Mg2+ Deprivation Elicits Rapid Ca2+ Uptake and Activates Ca2+/Calcineurin Signaling in Saccharomyces cerevisiae. Eukaryotic Cell, 2007, 6, 592-599.	3.4	51

#	Article	IF	CITATIONS
109	Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nature Cell Biology, 2007, 9, 445-452.	10.3	307
110	Mitochondria and Ca2+ signaling: old guests, new functions. Pflugers Archiv European Journal of Physiology, 2007, 455, 375-396.	2.8	127
111	Mitochondria maintain maturation and secretion of lipoprotein lipase in the endoplasmic reticulum. Biochemical Journal, 2006, 396, 173-182.	3.7	19
112	A New Type of Non-Ca2+-buffering Apo(a)-based Fluorescent Indicator for Intraluminal Ca2+ in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2006, 281, 5017-5025.	3.4	27
113	Twenty Years of Calcium Imaging: Cell Physiology to Dye For. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 112-127.	3.4	42
114	Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. Journal of Cell Science, 2004, 117, 1319-1328.	2.0	314
115	Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nature Genetics, 2004, 36, 271-276.	21.4	349
116	Hyperglycemic Conditions Affect Shape and Ca2+ Homeostasis of Mitochondria in Endothelial Cells. Journal of Cardiovascular Pharmacology, 2004, 44, 423-436.	1.9	51
117	Novel High Energy Intermediate Analogues with Triazasterol-Related Structures as Inhibitors of Ergosterol Biosynthesis. Part 1. Synthesis and Antifungal Activity of N-Alkyl-Nâ€2-(phenethyl- and) Tj ETQq1 1 0.	78 4 304 rg	BT¢Overlock
118	Anandamide initiates Ca2+ signaling via CB2 receptor linked to phospholipase C in calf pulmonary endothelial cells. British Journal of Pharmacology, 2003, 140, 1351-1362.	5.4	104
119	Sustained Ca2+ Transfer across Mitochondria Is Essential for Mitochondrial Ca2+ Buffering, Store-operated Ca2+ Entry, and Ca2+ Store Refilling. Journal of Biological Chemistry, 2003, 278, 44769-44779.	3.4	170
120	Mitochondria Efficiently Buffer Subplasmalemmal Ca2+Elevation during Agonist Stimulation. Journal of Biological Chemistry, 2003, 278, 10807-10815.	3.4	84
121	Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca++/NFAT. Blood, 2002, 99, 199-206.	1.4	185
122	Novel High Energy Intermediate Analogues with Triazasterol-Related Structures as Inhibitors of Ergosterol Biosynthesis Part I: Synthesis and Antifungal Activity of N-alkyl-N-(phenethyl- and) Tj ETQq0 0 0 rgBT	Overlock 4.1	10 Jf 50 222
123	535-546. Functional Analysis Of Histamine Receptor Subtypes Involved In Endothelium-Mediated Relaxation Of The Human Uterine Artery. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 711-716.	1.9	20
124	Subplasmalemmal endoplasmic reticulum controls KCachannel activity upon stimulation with a moderate histamine concentration in a human umbilical vein endothelial cell line. Journal of Physiology, 2002, 540, 73-84.	2.9	37
125	Nitric oxide inhibits capacitative Ca2+entry by suppression of mitochondrial Ca2+handling. British Journal of Pharmacology, 2002, 137, 821-830.	5.4	35
126	Hexokinase-II Enzymatic Activity Requires High Levels of Intracellular K+. SSRN Electronic Journal, O, , .	0.4	0

#	Article	IF	CITATIONS
127	Salivary potassium measured by genetically encoded potassium ion indicators as a surrogate for plasma potassium levels in hemodialysis patients – a proof-of-concept study. Nephrology Dialysis Transplantation, 0, , .	0.7	0