Divina A Navarro

List of Publications by Citations

Source: https://exaly.com/author-pdf/6353519/divina-a-navarro-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18 1,183 30 33 g-index h-index citations papers 8.2 1,420 4.57 33 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
30	Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. <i>Environmental Science & Description (Control of Science & Description of Scien</i>	10.3	240
29	Assessing antibiotic sorption in soil: a literature review and new case studies on sulfonamides and macrolides. <i>Chemistry Central Journal</i> , 2014 , 8, 5		128
28	Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. <i>Journal of Hazardous Materials</i> , 2012 , 211-212, 427-35	12.8	115
27	Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake. <i>Journal of Hazardous Materials</i> , 2015 , 300, 788-795	12.8	78
26	Ecological Risk Assessment of Nano-enabled Pesticides: A Perspective on Problem Formulation. Journal of Agricultural and Food Chemistry, 2018 , 66, 6480-6486	5.7	72
25	Natural organic matter-mediated phase transfer of quantum dots in the aquatic environment. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	58
24	Influences of Chemical Properties, Soil Properties, and Solution pH on Soil-Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs). <i>Environmental Science & amp; Technology</i> , 2020 , 54, 15883-15892	10.3	56
23	Sorption of PFOA onto different laboratory materials: Filter membranes and centrifuge tubes. <i>Chemosphere</i> , 2019 , 222, 671-678	8.4	49
22	Cd tolerance and accumulation in the aquatic macrophyte, Chara australis: potential use for charophytes in phytoremediation. <i>Environmental Science & Description (Control of the Control </i>	10.3	49
21	Remobilisation of silver and silver sulphide nanoparticles in soils. <i>Environmental Pollution</i> , 2014 , 193, 102-110	9.3	35
20	Quantifying the Sensitivity of Soil Microbial Communities to Silver Sulfide Nanoparticles Using Metagenome Sequencing. <i>PLoS ONE</i> , 2016 , 11, e0161979	3.7	35
19	Characterization and ecological risk assessment of nanoparticulate CeO2 as a diesel fuel catalyst. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1896-905	3.8	30
18	Differences in soil mobility and degradability between water-dispersible CdSe and CdSe/ZnS quantum dots. <i>Environmental Science & Environmental Scienc</i>	10.3	28
17	Combined effects of cadmium and zinc on growth, tolerance, and metal accumulation in Chara australis and enhanced phytoextraction using EDTA. <i>Ecotoxicology and Environmental Safety</i> , 2013 , 98, 236-43	7	25
16	Partitioning of hydrophobic CdSe quantum dots into aqueous dispersions of humic substances: influence of capping-group functionality on the phase-transfer mechanism. <i>Journal of Colloid and Interface Science</i> , 2010 , 348, 119-28	9.3	25
15	Behaviour of fullerenes (C60) in the terrestrial environment: potential release from biosolids-amended soils. <i>Journal of Hazardous Materials</i> , 2013 , 262, 496-503	12.8	23
14	Sorptive remediation of perfluorooctanoic acid (PFOA) using mixed mineral and graphene/carbon-based materials. <i>Environmental Chemistry</i> , 2018 , 15, 472	3.2	21

LIST OF PUBLICATIONS

13	Impact of (nano)formulations on the distribution and wash-off of copper pesticides and fertilisers applied on citrus leaves. <i>Environmental Chemistry</i> , 2019 , 16, 401	3.2	19
12	Predicting partitioning of radiolabelled C-PFOA in a range of soils using diffuse reflectance infrared spectroscopy. <i>Science of the Total Environment</i> , 2019 , 686, 505-513	10.2	17
11	Sorption behaviour of per- and polyfluoroalkyl substances (PFASs) as affected by the properties of coastal estuarine sediments. <i>Science of the Total Environment</i> , 2020 , 720, 137263	10.2	17
10	Fullerol as a Potential Pathway for Mineralization of Fullerene Nanoparticles in Biosolid-Amended Soils. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 7-12	11	15
9	An investigation into the long-term binding and uptake of PFOS, PFOA and PFHxS in soil - plant systems. <i>Journal of Hazardous Materials</i> , 2021 , 404, 124065	12.8	11
8	Fate of radiolabeled C fullerenes in aged soils. <i>Environmental Pollution</i> , 2017 , 221, 293-300	9.3	8
7	Partitioning behavior and stabilization of hydrophobically coated HfO2, ZrO2 and Hfx Zr 1-x O2 nanoparticles with natural organic matter reveal differences dependent on crystal structure. Journal of Hazardous Materials, 2011, 196, 302-10	12.8	8
6	Mineralisation and release of 14C-graphene oxide (GO) in soils. <i>Chemosphere</i> , 2020 , 238, 124558	8.4	7
5	Comparing the Leaching Behavior of Per- and Polyfluoroalkyl Substances from Contaminated Soils Using Static and Column Leaching Tests <i>Environmental Science & Environmental Science & Environmental</i>	10.3	4
4	Mixed-Mode Remediation of Cadmium and Arsenate Ions Using Graphene-Based Materials. <i>Clean - Soil, Air, Water</i> , 2018 , 46, 1800073	1.6	3
3	Increasing ionic strength and valency of cations enhance sorption through hydrophobic interactions of PFAS with soil surfaces <i>Science of the Total Environment</i> , 2022 , 817, 152975	10.2	3
2	Potential Application of Laser-Induced Breakdown Spectroscopy (LIBS) Data for the Determination of Cation Exchange Capacity (CEC) of Agricultural Soils. <i>ChemistrySelect</i> , 2020 , 5, 3798-3804	1.8	2
1	Organic carbon and salinity affect desorption of PFAS from estuarine sediments. <i>Journal of Soils and Sediments</i> , 2022 , 22, 1302-1314	3.4	O