Isidro M Pastor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6353384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imidazolium-urea low transition temperature mixtures for the UHP-promoted oxidation of boron compounds. Journal of Molecular Liquids, 2022, 347, 118349.	2.3	6
2	N,N-Diethyl-3-methylbenzamide. MolBank, 2022, 2022, M1395.	0.2	0
3	Density Functional Theory-Inspired Design of Ir/P,S-Catalysts for Asymmetric Hydrogenation of Olefins. Organometallics, 2021, 40, 3424-3435.	1.1	5
4	Efficient Thiophene Synthesis Mediated by 1,3â€Bis(carboxymethyl)imidazolium Chloride: Câ€C and Câ€S Bond Formation. European Journal of Organic Chemistry, 2020, 2020, 4319-4325.	1.2	6
5	Anionâ€Dependent Imidazoliumâ€Based Catalysts for Allylation of Aniline with Tunable Regioselectivity. Advanced Synthesis and Catalysis, 2020, 362, 2494-2502.	2.1	15
6	Effective and Sustainable Access to Quinolines and Acridines: A Heterogeneous Imidazolium Salt Mediates C–C and C–N Bond Formation. European Journal of Organic Chemistry, 2019, 2019, 4928-4940.	1.2	20
7	Comparative Study of Catalytic Systems Formed by Palladium and Acylâ€Substituted Imidazolium Salts. ChemistrySelect, 2018, 3, 887-893.	0.7	13
8	1,3-Bis(carboxymethyl)imidazolium Chloride as a Metal-Free and Recyclable Catalyst for the Synthesis of <i>N</i> -Allylanilines by Allylic Substitution of Alcohols. ACS Sustainable Chemistry and Engineering, 2018, 6, 14063-14070.	3.2	22
9	Oxidative Coupling–Thionation of Amines Mediated by Iron-Based Imidazolium Salts for the Preparation of Thioamides. Synthesis, 2018, 50, 3031-3040.	1.2	8
10	Solid-Supported Palladium Catalysts in Sonogashira Reactions: Recent Developments. Catalysts, 2018, 8, 202.	1.6	50
11	Versatile Barium and Calcium Imidazoliumâ€Dicarboxylate Heterogeneous Catalysts in Quinoline Synthesis. European Journal of Organic Chemistry, 2017, 2017, 6375-6381.	1.2	19
12	Recent Advances in Asymmetric Organocatalyzed Conjugate Additions to Nitroalkenes. Molecules, 2017, 22, 895.	1.7	117
13	IMPROVEMENT OF ACADEMIC PERFORMANCE AND INDIVIDUAL GROWTH IN STUDENTS IN UNIVERSITY EDUCATION ON THE BASIS OF KNOWLEDGE AND DEVELOPMENT OF STRENGTHS AND THE ATTAINMENT OF THEIR OWN OBJECTIVES. , 2017, , .		0
14	Ironâ€Based Imidazolium Salts as Versatile Catalysts for the Synthesis of Quinolines and 2†and 4â€Allylanilines by Allylic Substitution of Alcohols. Advanced Synthesis and Catalysis, 2016, 358, 2929-2939.	2.1	24
15	Metal–Organic Framework Based on Copper and Carboxylateâ€Imidazole as Robust and Effective Catalyst in the Oxidative Amidation of Carboxylic Acids and Formamides. European Journal of Organic Chemistry, 2016, 2016, 5180-5188.	1.2	28
16	Organocatalyzed Assembly of Chlorinated Quaternary Stereogenic Centers. Asian Journal of Organic Chemistry, 2016, 5, 1428-1437.	1.3	24
17	Deep Eutectic Solvents: The Organic Reaction Medium of the Century. European Journal of Organic Chemistry, 2016, 2016, 612-632.	1.2	519
18	STUDENT CONSIDERATIONS ON THEIR PRACTICAL TRAINING IN ORGANIC CHEMISTRY SUBJECTS. INTED Proceedings, 2016, , .	0.0	0

ISIDRO M PASTOR

#	Article	IF	CITATIONS
19	CONTRIBUTION OF PRACTICAL ACTIVITIES TO THE ASSESSMENT OF EXPERIMENTAL SCIENCES SUBJECTS. INTED Proceedings, 2016, , .	0.0	0
20	A comparative study of hydroxyl―and carboxylateâ€functionalized imidazolium and benzimidazolium salts as precursors for Nâ€heterocyclic carbene ligands. Applied Organometallic Chemistry, 2015, 29, 624-632.	1.7	19
21	An Acyl-NHC Osmium Cooperative System: Coordination of Small Molecules and Heterolytic B–H and O–H Bond Activation. Organometallics, 2015, 34, 3902-3908.	1.1	50
22	Palladium nanoparticles supported on graphene and reduced graphene oxide as efficient recyclable catalyst for the Suzuki–Miyaura reaction of potassium aryltrifluoroborates. Journal of Molecular Catalysis A, 2015, 404-405, 1-7.	4.8	45
23	Biscarboxy-Functionalized Imidazole and Palladium as Highly Active Catalytic System in Protic Solvents: Methanol and Water. Synthesis, 2014, 46, 2965-2975.	1.2	13
24	1,2â€Functionalized Imidazoles as Palladium Ligands: An Efficient and Robust Catalytic System for the Fluorineâ€Free Hiyama Reaction. European Journal of Organic Chemistry, 2014, 2014, 872-877.	1.2	7
25	Enantioselective catalytic lithiation using a chiral binaphthyl derivative as electron carrier. Arkivoc, 2014, 2014, 71-84.	0.3	Ο
26	Recent Advances in the Catalytic Enantioselective Reformatsky Reaction. European Journal of Organic Chemistry, 2013, 2013, 7028-7034.	1.2	28
27	Osmium Catalyst for the Borrowing Hydrogen Methodology: α-Alkylation of Arylacetonitriles and Methyl Ketones. ACS Catalysis, 2013, 3, 2072-2075.	5.5	142
28	NHCâ€Ligand Effectiveness in the Fluorineâ€Free Hiyama Reaction of Aryl Halides. European Journal of Organic Chemistry, 2013, 2013, 1479-1484.	1.2	21
29	Heterocyclic Carbene–Metal-catalyzed Csp2–Csp2 and Csp–Csp2 Couplings Using Nonmetallic Substrates. Chemistry Letters, 2013, 42, 94-108.	0.7	23
30	Palladium and Organocatalysis: An Excellent Recipe for Asymmetric Synthesis. Molecules, 2013, 18, 10108-10121.	1.7	21
31	Isoprene as Lithiation Mediator: Synthesis of 2-Substituted 1-Alkylimidazole Derivatives. Synthesis, 2012, 44, 2630-2638.	1.2	5
32	Focused Update on the Prins Reaction and the Prins Cyclization. Current Organic Chemistry, 2012, 16, 1277-1312.	0.9	133
33	Preparation, Hydrogen Bonds, and Catalytic Activity in Metal-Promoted Addition of Arylboronic Acids to Enones of a Rhodium Complex Containing an NHC Ligand with an Alcohol Function. Organometallics, 2012, 31, 6154-6161.	1.1	31
34	Heck–Matsuda Reactions Catalyzed by a Hydroxyalkylâ€Functionalized NHC and Palladium Acetate. European Journal of Organic Chemistry, 2012, 2012, 3151-3156.	1.2	30
35	Osmium NHC Complexes from Alcohol-Functionalized Imidazoles and Imidazolium Salts. Organometallics, 2011, 30, 1658-1667.	1.1	60
36	Non-Deprotonating Methodologies for Organolithium Reagents Starting from Non-Halogenated Materials. Part 1: Carbon – Heteroatom Bond Cleavage. Current Organic Chemistry, 2011, 15, 375-400.	0.9	9

ISIDRO M PASTOR

#	Article	IF	CITATIONS
37	Non-Deprotonating Methodologies for Organolithium Reagents Starting from Non-Halogenated Materials. Part 2: Transmetallation and Addition to Multiple Bonds. Current Organic Chemistry, 2011, 15, 2362-2389.	0.9	8
38	(NHC)Palladium Complexes from Hydroxyâ€Functionalized Imidazolium Salts as Catalyst for the Microwaveâ€Accelerated Fluorineâ€Free Hiyama Reaction. European Journal of Organic Chemistry, 2011, 2011, 7174-7181.	1.2	35
39	Cyclopropylmethyl- and cyclobutylmethyllithium by an arene-catalyzed lithiation. Stability and reactivity. Tetrahedron, 2010, 66, 2928-2935.	1.0	8
40	Transitionâ€Metal atalyzed Synthesis of Hydroxylated Arenes. Chemistry - A European Journal, 2010, 16, 5274-5284.	1.7	176
41	Isoprene-Mediated Lithiation of 1-Alkylimidazoles: Chiral Induction of the Alkyl Substituent. Letters in Organic Chemistry, 2010, 7, 373-376.	0.2	3
42	Bioactive N-Phenylimidazole Derivatives. Current Chemical Biology, 2009, 3, 385-408.	0.2	5
43	Easy selective generation of (lithiomethyl)cyclopropane or homoallyllithium by a chlorine–lithium exchange. Tetrahedron Letters, 2008, 49, 6870-6872.	0.7	8
44	The Prins Reaction: Advances and Applications. Current Organic Chemistry, 2007, 11, 925-957.	0.9	198
45	Solvent-free direct regioselective ring opening of epoxides with imidazoles. Tetrahedron, 2007, 63, 469-473.	1.0	53
46	lsoprene-catalysed lithiation: deprotection and functionalisation of imidazole derivatives. Tetrahedron, 2007, 63, 947-952.	1.0	15
47	Isoprene-promoted lithiation of 1-phenylimidazole. Arkivoc, 2007, 2008, 8-15.	0.3	1
48	lsoprene-catalyzed lithiation of imidazole: synthesis of 2-(hydroxyalkyl)- and 2-(aminoalkyl)imidazoles. Tetrahedron, 2005, 61, 11148-11155.	1.0	31
49	2-(Aminomethyl)-oxazolines: Highly Modular Scaffolds for the Preparation of Novel Asymmetric Ligands ChemInform, 2005, 36, no.	0.1	0
50	Asymmetric Ring Opening of Epoxides. Current Organic Chemistry, 2005, 9, 1-29.	0.9	154
51	2-(Aminomethyl)-oxazolines:Â Highly Modular Scaffolds for the Preparation of Novel Asymmetric Ligands. Journal of Organic Chemistry, 2005, 70, 2921-2929.	1.7	37
52	Highly Enantioselective Ruthenium-Catalyzed Reduction of Ketones Employing Readily Available Peptide Ligands ChemInform, 2004, 35, no.	0.1	0
53	Highly Enantioselective Ruthenium-Catalyzed Reduction of Ketones Employing Readily Available Peptide Ligands. Chemistry - A European Journal, 2004, 10, 294-302.	1.7	84
54	Masked ω-Lithio Ester Enolates: Synthetic Applications. Molecules, 2004, 9, 330-348.	1.7	8

ISIDRO M PASTOR

#	Article	IF	CITATIONS
55	Novel Simple and Highly Modular Ligands for Efficient Asymmetric Transfer-Hydrogenation of Ketones ChemInform, 2003, 34, no.	0.1	О
56	Employing the Structural Diversity of Nature: Development of Modular Dipeptide-Analogue Ligands for Ruthenium-Catalyzed Enantioselective Transfer Hydrogenation of Ketones ChemInform, 2003, 34, no.	0.1	0
57	Employing the Structural Diversity of Nature: Development of Modular Dipeptide-Analogue Ligands for Ruthenium-Catalyzed Enantioselective Transfer Hydrogenation of Ketones. Chemistry - A European Journal, 2003, 9, 4031-4045.	1.7	80
58	Novel simple and highly modular ligands for efficient asymmetric transfer-hydrogenation of ketones. Chemical Communications, 2002, , 2046-2047.	2.2	64
59	Novel highly modular C2-symmetric oxazoline ligands—application in titanium-catalyzed diethylzinc additions to aldehydes. Tetrahedron Letters, 2002, 43, 1743-1746.	0.7	40
60	Functionalised organotitanium compounds: from lithium to titanium intermediates in chemoselective reactions with carbonyl compounds. Tetrahedron, 2001, 57, 2365-2370.	1.0	13
61	New reactivity of functionalised organolithium compounds in the presence of Cu(I) or Cu(II) salts: conjugate addition, acylation or dimerisation. Tetrahedron, 2001, 57, 2371-2378.	1.0	19
62	Masked β-, γ- and δ-lithium ester enolates: useful reagents in organic synthesis. Tetrahedron Letters, 2001, 42, 1029-1032.	0.7	9
63	Lewis acid-promoted conjugate addition of functionalised organolithium compounds to electrophilic olefins. Tetrahedron, 2001, 57, 5799-5805.	1.0	20
64	Functionalized Organotitanium Compounds: From Lithium to Titanium Intermediates in Chemoselective Reactions with Carbonyl Compounds ChemInform, 2001, 32, 79-79.	0.1	0
65	New Reactivity of Functionalized Organolithium Compounds in the Presence of Cu(I) or Cu(II) Salts: Conjugate Addition, Acylation or Dimerization ChemInform, 2001, 32, 80-80.	0.1	0
66	Copper(I) or (II)-mediated conjugate addition or dimerisation of functionalised organolithium compounds. Tetrahedron Letters, 2000, 41, 1589-1592.	0.7	23
67	Lithium- α-lithioacetate and β-lithiopropionate: useful intermediates in organic synthesis. Tetrahedron Letters, 2000, 41, 5335-5339.	0.7	16
68	Functionalised propargyllithium reagents. Tetrahedron, 1997, 53, 17201-17210.	1.0	9