
Yawara Kawano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6352579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting the bone marrow microenvironment in multiple myeloma. Immunological Reviews, 2015, 263, 160-172.	6.0	323
2	Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): a multicentre, open-label, randomised phase 3 trial. Lancet, The, 2021, 397, 2361-2371.	13.7	177
3	CXCR4 Regulates Extra-Medullary Myeloma through Epithelial-Mesenchymal-Transition-like Transcriptional Activation. Cell Reports, 2015, 12, 622-635.	6.4	123
4	PDK1 inhibition is a novel therapeutic target in multiple myeloma. British Journal of Cancer, 2013, 108, 170-178.	6.4	113
5	The cancer glycome: Carbohydrates as mediators of metastasis. Blood Reviews, 2015, 29, 269-279.	5.7	91
6	Multiple myeloma cells expressing low levels of CD138 have an immature phenotype and reduced sensitivity to lenalidomide. International Journal of Oncology, 2012, 41, 876-884.	3.3	84
7	Blocking IFNAR1 inhibits multiple myeloma–driven Treg expansion and immunosuppression. Journal of Clinical Investigation, 2018, 128, 2487-2499.	8.2	80
8	Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells. International Journal of Oncology, 2015, 46, 963-972.	3.3	62
9	Multiple Myeloma and the immune microenvironment. Current Cancer Drug Targets, 2017, 17, 1-1.	1.6	59
10	Metformin Affects Cortical Bone Mass and Marrow Adiposity in Diet-Induced Obesity in Male Mice. Endocrinology, 2017, 158, 3369-3385.	2.8	54
11	Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia, 2016, 30, 1103-1115.	7.2	46
12	Platelets Enhance Multiple Myeloma Progression via IL-1β Upregulation. Clinical Cancer Research, 2018, 24, 2430-2439.	7.0	44
13	Hypoxia reduces CD138 expression and induces an immature and stem cell-like transcriptional program in myeloma cells. International Journal of Oncology, 2013, 43, 1809-1816.	3.3	43
14	Lactate, a putative survival factor for myeloma cells, is incorporated by myeloma cells through monocarboxylate transporters 1. Experimental Hematology and Oncology, 2015, 4, 12.	5.0	40
15	PU.1 is a potent tumor suppressor in classical Hodgkin lymphoma cells. Blood, 2013, 121, 962-970.	1.4	39
16	Inhibition of microRNA-138 enhances bone formation in multiple myeloma bone marrow niche. Leukemia, 2018, 32, 1739-1750.	7.2	34
17	Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma. Current Opinion in Hematology, 2016, 23, 426-433.	2.5	33
18	Progression signature underlies clonal evolution and dissemination of multiple myeloma. Blood, 2021, 137, 2360-2372.	1.4	26

YAWARA KAWANO

#	Article	IF	CITATIONS
19	Bone Marrow Stroma and Vascular Contributions to Myeloma Bone Homing. Current Osteoporosis Reports, 2017, 15, 499-506.	3.6	23
20	Exome sequencing reveals recurrent germ line variants in patients with familial Waldenström macroglobulinemia. Blood, 2016, 127, 2598-2606.	1.4	22
21	Lysine Demethylase 5A Is Required for MYC-Driven Transcription in Multiple Myeloma. Blood Cancer Discovery, 2021, 2, 370-387.	5.0	19
22	Citron Rho-interacting kinase silencing causes cytokinesis failure and reduces tumor growth in multiple myeloma. Blood Advances, 2019, 3, 995-1002.	5.2	15
23	TRAIL produced from multiple myeloma cells is associated with osteolytic markers. Oncology Reports, 2012, 27, 39-44.	2.6	13
24	Successful treatment with rituximab and thalidomide of POEMS syndrome associated with Waldenstrom macroglobulinemia. Journal of the Neurological Sciences, 2010, 297, 101-104.	0.6	12
25	Targeting the Bone Marrow Microenvironment. Cancer Treatment and Research, 2016, 169, 63-102.	0.5	12
26	Production of TRAIL by Multiple Myeloma Cells: a Potential Prediction Marker for Skeletal-Related Events. Blood, 2010, 116, 2975-2975.	1.4	9
27	A novel PDK1 inhibitor, JX06, inhibits glycolysis and induces apoptosis in multiple myeloma cells. Biochemical and Biophysical Research Communications, 2022, 587, 153-159.	2.1	9
28	ROBO1 Promotes Homing, Dissemination, and Survival of Multiple Myeloma within the Bone Marrow Microenvironment. Blood Cancer Discovery, 2021, 2, 338-353.	5.0	8
29	Expression of activated integrin β7 in multiple myeloma patients. International Journal of Hematology, 2021, 114, 3-7.	1.6	8
30	Dissecting the Mechanisms of Activity of SLAMF7 and the Targeting Antibody Elotuzumab in Multiple Myeloma. Blood, 2014, 124, 3431-3431.	1.4	8
31	Epigenetics in Multiple Myeloma. Cancer Treatment and Research, 2016, 169, 35-49.	0.5	7
32	Successful Treatment of Bing-Neel Syndrome Accompanying Waldenström's Macroglobulinemia with R-MPV: A Case Report. Journal of Clinical and Experimental Hematopathology: JCEH, 2015, 55, 113-119.	0.8	6
33	Bufalin induces DNA damage response under hypoxic condition in myeloma cells. Oncology Letters, 2018, 15, 6443-6449.	1.8	6
34	Water Droplet-in-Oil Digestion Method for Single-Cell Proteomics. Analytical Chemistry, 2022, 94, 10329-10336.	6.5	6
35	MUC1/KL-6 expression confers an aggressive phenotype upon myeloma cells. Biochemical and Biophysical Research Communications, 2018, 507, 246-252.	2.1	4
36	Characterization of the Role of Regulatory T Cells (Tregs) in Inducing Progression of Multiple Myeloma. Blood, 2015, 126, 502-502.	1.4	4

YAWARA KAWANO

#	Article	IF	CITATIONS
37	Role of Noninvasive Diagnostic Imaging in Cardiac Amyloidosis: A Review. Cardiovascular Imaging Asia, 2018, 2, 97.	0.1	4
38	A novel in vivo model for studying conditional dual loss of BLIMPâ€1 and p53 in B ells, leading to tumor transformation. American Journal of Hematology, 2017, 92, E138-E145.	4.1	3
39	Base-to-apex gradient pattern of cardiac impairment identified on myocardial T1 mapping in cardiac amyloidosis. Radiology Case Reports, 2019, 14, 72-74.	0.6	3
40	The Purine Metabolic Enzyme AMPD1 Is a Novel Therapeutic Target for Multiple Myeloma. Blood, 2018, 132, 5614-5614.	1.4	2
41	Aerobic Glycolysis: A Possible Target for Treating Multiple Myeloma (MM) with High Serum LDH Levels. Blood, 2011, 118, 1799-1799.	1.4	2
42	Lactate Is a Crucial Energy Source For Multiple Myeloma (MM) Cells In Bone Marrow Microenvironment. Blood, 2013, 122, 3109-3109.	1.4	2
43	A Small Molecule, Shikonin, Dually Functions As a Proteasome Inhibitor and a Necroptosis Inducer In Multiple Myeloma Cells. Blood, 2013, 122, 3172-3172.	1.4	2
44	Daratumumab, lenalidomide and dexamethasone in newly diagnosed systemic light chain amyloidosis patients associated with multiple myeloma. British Journal of Haematology, 2022, 198, .	2.5	2
45	Isatuximab plus carfilzomib and dexamethasone in East Asian patients with relapsed multiple myeloma: IKEMA subgroup analysis. International Journal of Hematology, 2022, 116, 553-562.	1.6	2
46	Rare concurrent indolent B-cell lymphoma and plasmablastic transformation of myeloma. Journal of Clinical and Experimental Hematopathology: JCEH, 2018, 58, 175-179.	0.8	1
47	Clinical potential of dual-energy cardiac CT in cardiac amyloidosis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 91-92.	3.0	1
48	Clonal-Heterogeneity and Propensity for Bone Metastasis in Multiple Myeloma. Blood, 2014, 124, 3370-3370.	1.4	1
49	Decreased CD138 Expression in Myeloma Cells: A Potential Indicator of Poor Prognosis and Aberrant Differentiation,. Blood, 2011, 118, 3939-3939.	1.4	1
50	Proteomic Characterization of the Multiple Myeloma Bone Marrow Extracellular Matrix. Blood, 2014, 124, 2051-2051.	1.4	1
51	Platelets/Megakaryocytes Are Critical Regulators of Tumor Progression in Multiple Myeloma. Blood, 2015, 126, 1793-1793.	1.4	1
52	JX06, a Novel PDK1 Inhibitor, Induces Myeloma Cell Apoptosis By Metabolic Reprogramming and Works Synergistically with Bortezomib. Blood, 2019, 134, 1814-1814.	1.4	1
53	Targeting Nicotinamide Adenine Dinucleotide (NAD) Glycohydrase Activity of CD38 Exerts Anti-Myeloma Effect Accompanying Intracellular NAD Elevation. Blood, 2019, 134, 1810-1810.	1.4	1
54	Relationship between Serum Bortezomib Concentration and Emergence of Diarrhea in Patients with Multiple Myeloma and/or AL Amyloidosis. Cancers, 2021, 13, 5674.	3.7	1

YAWARA KAWANO

#	Article	IF	CITATIONS
55	Roundabout 1 (ROBO1) Mediates Multiple Myeloma Survival and Interaction with the Bone Marrow Microenvironment. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e103-e104.	0.4	Ο
56	Progression signature underlies clonal evolution and dissemination of Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e19-e20.	0.4	0
57	Myeloma Mouse Models in Studying Myeloma-Associated Bone Disease. , 2020, , 355-361.		Ο
58	Isatuximab plus carfilzomib and dexamethasone in east Asian patients with relapsed multiple myeloma: IKEMA subgroup analysis Journal of Clinical Oncology, 2021, 39, e20015-e20015.	1.6	0
59	CD125-Expressing Myeloma: A Subgroup of Multiple Myeloma (MM) with Immature Phenotype, Endoplasmic Reticulum Stress Response and Low Sensitivity to Bortezomib. Blood, 2010, 116, 616-616.	1.4	Ο
60	Hypoxia Reduces CD138 Expression and Induces Immature Phenotype in Myeloma Cells. Blood, 2012, 120, 3956-3956.	1.4	0
61	Citron Rho-Interacting Serine/Threonine kinase (CIT) Is a Novel Therapeutic Target in Multiple Myeloma Cells. Blood, 2014, 124, 3430-3430.	1.4	0
62	Early Trafficking of Bone Marrow Derived-Endothelial Progenitor Cells Promotes Multiple Myeloma Progression. Blood, 2014, 124, 4719-4719.	1.4	0
63	Prognostic Value of Circulating Exosomal microRNAs in 112 Patients with Multiple Myeloma. Blood, 2014, 124, 2056-2056.	1.4	0
64	Abstract 679: Dual conditional loss of BLIMP-1 and p53 in B-cells drives B-cell lymphomagenesis. , 2016, ,		0
65	Roundabout 1 (ROBO1)/SLIT2 Is a Novel Signaling Pathway in Multiple Myeloma Promoting Survival and Bone Marrow Niche Interaction. Blood, 2016, 128, 485-485.	1.4	0
66	Microrna-138 Regulates Osteogenic Differentiation and Its Inhibition Presents a Novel Therapeutic Line to Prevent Bone Lytic Lesions in Multiple Myeloma. Blood, 2016, 128, 4483-4483.	1.4	0
67	Dual Conditional Loss of BLIMP-1 and p53 in B-Cells Drives B-Cell Lymphomagenesis. Blood, 2016, 128, 4169-4169.	1.4	0
68	In Vivo Analysis of Clonal Evolution of Multiple Myeloma. Blood, 2016, 128, 799-799.	1.4	0
69	Deciphering Clonal Evolution and Dissemination of Multiple Myeloma Cells In Vivo. Blood, 2018, 132, 55-55.	1.4	0
70	The Transmembrane Receptor Roundabout 1 (ROBO1) Is Necessary for Multiple Myeloma Proliferation and Homing to the Bone Marrow Niche. Blood, 2019, 134, 507-507.	1.4	0
71	Targeting the Plasma Cell Specific Purine Metabolic Enzyme, AMPD1, Induces Multiple Myeloma Cell Death Accompanying NAD Depletion. Blood, 2019, 134, 3097-3097.	1.4	0
72	The Role of CD38 in Multiple Myeloma Cell Biology. Blood, 2021, 138, 1580-1580.	1.4	0