## Taeyoon Lee

## List of Publications by Citations

Source: https://exaly.com/author-pdf/6352387/taeyoon-lee-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56<br/>papers3,005<br/>citations24<br/>h-index54<br/>g-index66<br/>ext. papers3,581<br/>ext. citations10.7<br/>avg, IF5.12<br/>L-index

| #  | Paper                                                                                                                                                                                                                | IF    | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 56 | Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. <i>Advanced Materials</i> , <b>2015</b> , 27, 2433-9                                                                         | 24    | 746       |
| 55 | Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics. <i>Advanced Functional Materials</i> , <b>2015</b> , 25, 3114-3121                                                             | 15.6  | 407       |
| 54 | Highly Sensitive Pressure Sensor Based on Bioinspired Porous Structure for Real-Time Tactile Sensing. <i>Advanced Electronic Materials</i> , <b>2016</b> , 2, 1600356                                                | 6.4   | 163       |
| 53 | Hysteresis behavior of electrical resistance in Pd thin films during the process of absorption and desorption of hydrogen gas. <i>International Journal of Hydrogen Energy</i> , <b>2010</b> , 35, 6984-6991         | 6.7   | 138       |
| 52 | Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics. <i>ACS Nano</i> , <b>2018</b> , 12, 4259-4268                                                             | 16.7  | 136       |
| 51 | Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications. <i>Advanced Materials</i> , <b>2020</b> , 32, e1902532                     | 24    | 111       |
| 50 | Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability. Small, 2017, 13, 1700368                                                                                                                 | 3 11  | 95        |
| 49 | Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications. <i>Materials</i> , <b>2016</b> , 9,                                                                                                               | 3.5   | 86        |
| 48 | Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires. <i>ACS Applied Materials &amp; District Sciences</i> , <b>2011</b> , 3, 4722-9                                            | 9.5   | 79        |
| 47 | Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells. <i>Advanced Materials</i> , <b>2016</b> , 28, 7365-74     | 24    | 70        |
| 46 | Switchable water-adhesive, superhydrophobic palladium-layered silicon nanowires potentiate the angiogenic efficacy of human stem cell spheroids. <i>Advanced Materials</i> , <b>2014</b> , 26, 7043-50               | 24    | 64        |
| 45 | Single-Droplet Multiplex Bioassay on a Robust and Stretchable Extreme Wetting Substrate through Vacuum-Based Droplet Manipulation. <i>ACS Nano</i> , <b>2018</b> , 12, 932-941                                       | 16.7  | 62        |
| 44 | Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective. <i>Nanomaterials</i> , <b>2015</b> , 5, 1493-1531                                                                | 5.4   | 62        |
| 43 | Graphene Oxide Hierarchical Patterns for the Derivation of Electrophysiologically Functional Neuron-like Cells from Human Neural Stem Cells. <i>ACS Applied Materials &amp; Design Company Stem Cells</i> , 8, 17763 | 3-7-4 | 61        |
| 42 | Gas-driven ultrafast reversible switching of super-hydrophobic adhesion on palladium-coated silicon nanowires. <i>Advanced Materials</i> , <b>2013</b> , 25, 4139-44                                                 | 24    | 57        |
| 41 | Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface. <i>Scientific Reports</i> , <b>2015</b> , 5, 12326                                                                 | 4.9   | 56        |
| 40 | Highly conductive and flexible fiber for textile electronics obtained by extremely low-temperature atomic layer deposition of Pt. NPG Asia Materials, 2016, 8, e331-e331                                             | 10.3  | 41        |

## (2014-2019)

| 39 | Multimodal Gesture-Distinguishable Sensor, VR Applications. <i>Advanced Functional Materials</i> , <b>2019</b> , 29, 1905808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.6 | 39 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 38 | Highly Conductive Fiber with Waterproof and Self-Cleaning Properties for Textile Electronics. <i>ACS Applied Materials &amp; Discrete Applied &amp; Discrete App</i> | 9.5  | 37 |
| 37 | Superhydrophobic, Transparent, and Stretchable 3D Hierarchical Wrinkled Film-Based Sensors for Wearable Applications. <i>Advanced Materials Technologies</i> , <b>2019</b> , 4, 1900230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.8  | 33 |
| 36 | Stimuli-responsive and on-chip nanomembrane micro-rolls for enhanced macroscopic visual hydrogen detection. <i>Science Advances</i> , <b>2018</b> , 4, eaap8203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.3 | 32 |
| 35 | A Droplet-Based High-Throughput SERS Platform on a Droplet-Guiding-Track-Engraved Superhydrophobic Substrate. <i>Small</i> , <b>2017</b> , 13, 1602865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11   | 31 |
| 34 | Efficient Direct Reduction of Graphene Oxide by Silicon Substrate. <i>Scientific Reports</i> , <b>2015</b> , 5, 12306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.9  | 30 |
| 33 | Bioinspired Geometry-Switchable Janus Nanofibers for Eye-Readable H2 Sensors. <i>Advanced Functional Materials</i> , <b>2017</b> , 27, 1701618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.6 | 28 |
| 32 | Reversible Liquid Adhesion Switching of Superamphiphobic Pd-Decorated Ag Dendrites via Gas-Induced Structural Changes. <i>Chemistry of Materials</i> , <b>2015</b> , 27, 4964-4971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.6  | 23 |
| 31 | Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. <i>Nature Biomedical Engineering</i> , <b>2021</b> , 5, 749-758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19   | 23 |
| 30 | Ultrastretchable Helical Conductive Fibers Using Percolated Ag Nanoparticle Networks Encapsulated by Elastic Polymers with High Durability in Omnidirectional Deformations for Wearable Electronics. <i>Advanced Functional Materials</i> , <b>2020</b> , 30, 1910026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.6 | 22 |
| 29 | Reversible wettability control of silicon nanowire surfaces: From superhydrophilicity to superhydrophobicity. <i>Thin Solid Films</i> , <b>2013</b> , 527, 179-185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.2  | 21 |
| 28 | Ultrafast single-droplet bouncing actuator with electrostatic force on superhydrophobic electrodes. <i>RSC Advances</i> , <b>2016</b> , 6, 66729-66737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7  | 16 |
| 27 | Enhanced Photoresponsivity of All-Inorganic (CsPbBr3) Perovskite Nanosheets Photodetector with Carbon Nanodots (CDs). <i>Electronics (Switzerland)</i> , <b>2019</b> , 8, 678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6  | 15 |
| 26 | Self-Bondable and Stretchable Conductive Composite Fibers with Spatially Controlled Percolated Ag Nanoparticle Networks: Novel Integration Strategy for Wearable Electronics. <i>Advanced Functional Materials</i> , <b>2020</b> , 30, 2005447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.6 | 15 |
| 25 | Chemical and Physical Pathways for Fabricating Flexible Superamphiphobic Surfaces with High Transparency. <i>Coatings</i> , <b>2018</b> , 8, 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.9  | 14 |
| 24 | Flatband voltage control in p-metal gate metal-oxide-semiconductor field effect transistor by insertion of TiO2 layer. <i>Applied Physics Letters</i> , <b>2010</b> , 96, 082905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4  | 14 |
| 23 | A facile method for the selective decoration of graphene defects based on a galvanic displacement reaction. <i>NPG Asia Materials</i> , <b>2016</b> , 8, e262-e262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.3 | 14 |
| 22 | Coupled self-assembled monolayer for enhancement of Cu diffusion barrier and adhesion properties. <i>RSC Advances</i> , <b>2014</b> , 4, 60123-60130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.7  | 13 |

| 21 | Nonfluorinated Superomniphobic Surfaces through Shape-Tunable Mushroom-like Polymeric Micropillar Arrays. <i>ACS Applied Materials &amp; Materia</i> | 9.5  | 13 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 20 | Wrinkling evolution of a growing bubble: the wonders of petal-like patterns in amorphous silicon membranes. <i>Soft Matter</i> , <b>2010</b> , 6, 3249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.6  | 12 |
| 19 | Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. <i>Science Advances</i> , <b>2020</b> , 6, eaaz6511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.3 | 11 |
| 18 | Highly Stable Surface-Enhanced Raman Spectroscopy Substrates Using Few-Layer Graphene on Silver Nanoparticles. <i>Journal of Nanomaterials</i> , <b>2015</b> , 2015, 1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.2  | 11 |
| 17 | Effect of the deposition temperature and a hydrogen post-annealing treatment on the structural, electrical, and optical properties of Ga-doped ZnO films. <i>Electronic Materials Letters</i> , <b>2009</b> , 5, 127-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9  | 11 |
| 16 | Facile method for the preparation of high-performance photodetectors with a GQDs/perovskite bilayer heterostructure. <i>Organic Electronics</i> , <b>2020</b> , 76, 105444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.5  | 11 |
| 15 | The impact of atomic layer deposited SiO2 passivation for high-k Ta1\(\mathbb{Z}\)TxO on the InP substrate.<br>Journal of Materials Chemistry C, <b>2015</b> , 3, 10293-10301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.1  | 10 |
| 14 | Ultrahigh Sensitive Au-Doped Silicon Nanomembrane Based Wearable Sensor Arrays for Continuous Skin Temperature Monitoring with High Precision. <i>Advanced Materials</i> , <b>2021</b> , e2105865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24   | 10 |
| 13 | Ultrasensitive and Stretchable Conductive Fibers Using Percolated Pd Nanoparticle Networks for Multisensing Wearable Electronics: Crack-Based Strain and H Sensors. <i>ACS Applied Materials &amp; Amp; Interfaces</i> , <b>2020</b> , 12, 45243-45253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.5  | 8  |
| 12 | Electrostatically-induced trajectory switching system on a multi-inlet-multi-outlet superhydrophobic droplet guiding track. <i>RSC Advances</i> , <b>2015</b> , 5, 5754-5761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.7  | 7  |
| 11 | Stretchable Electronics: Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications (Adv. Mater. 5/2020). <i>Advanced Materials</i> , <b>2020</b> , 32, 2070038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24   | 6  |
| 10 | Electronic Drugs: Spatial and Temporal Medical Treatment of Human Diseases. <i>Advanced Materials</i> , <b>2021</b> , 33, e2005930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24   | 6  |
| 9  | The effects of surface modification on the electrical properties of pl + junction silicon nanowires grown by an aqueous electroless etching method. <i>Journal of Nanoparticle Research</i> , <b>2012</b> , 14, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.3  | 4  |
| 8  | Instant, multiscale dry transfer printing by atomic diffusion control at heterogeneous interfaces. <i>Science Advances</i> , <b>2021</b> , 7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.3 | 4  |
| 7  | Counterbalanced Effect of Surface Trap and Auger Recombination on the Transverse Terahertz Carrier Dynamics in Silicon Nanowires. <i>IEEE Transactions on Terahertz Science and Technology</i> , <b>2015</b> , 5, 605-612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.4  | 3  |
| 6  | PE-ALD of Ge1\( \text{\text{BS}}\) x amorphous chalcogenide alloys for OTS applications. <i>Journal of Materials Chemistry C</i> , <b>2021</b> , 9, 6006-6013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.1  | 2  |
| 5  | Pressure Sensors: Highly Sensitive Pressure Sensor Based on Bioinspired Porous Structure for Real-Time Tactile Sensing (Adv. Electron. Mater. 12/2016). <i>Advanced Electronic Materials</i> , <b>2016</b> , 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.4  | 1  |
| 4  | Increased aortic augmentation index is associated with reduced exercise capacity after heart transplantation. <i>Journal of Hypertension</i> , <b>2020</b> , 38, 1777-1785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.9  | 1  |

- Deterministic Multimodal Perturbation Enables Neuromorphic-Compatible Signal Multiplexing 3 2022, 4, 102-110

1

- Cerebral Oximetry: Ultrastretchable Helical Conductive Fibers Using Percolated Ag Nanoparticle Networks Encapsulated by Elastic Polymers with High Durability in Omnidirectional Deformations 15.6 for Wearable Electronics (Adv. Funct. Mater. 29/2020). Advanced Functional Materials, 2020, 30, 2070198
- Spray Coating Technologies: Conductive Hierarchical Hairy Fibers for Highly Sensitive, Stretchable, and Water-Resistant Multimodal Gesture-Distinguishable Sensor, VR Applications (Adv. Funct. 15.6 Mater. 50/2019). Advanced Functional Materials, 2019, 29, 1970344