Tokhir Dadaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6351912/publications.pdf

Version: 2024-02-01

29 papers

3,743 citations

331670
21
h-index

27 g-index

32 all docs 32 docs citations

times ranked

32

6650 citing authors

#	Article	IF	CITATIONS
1	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	21.4	652
2	Germline <i>BRCA</i> Mutations Are Associated With Higher Risk of Nodal Involvement, Distant Metastasis, and Poor Survival Outcomes in Prostate Cancer. Journal of Clinical Oncology, 2013, 31, 1748-1757.	1.6	641
3	Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nature Genetics, 2013, 45, 385-391.	21.4	492
4	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	21.4	408
5	Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. European Urology, 2015, 68, 186-193.	1.9	279
6	Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nature Genetics, 2011, 43, 785-791.	21.4	265
7	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	21.4	264
8	Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression. Human Molecular Genetics, 2013, 22, 2520-2528.	2.9	100
9	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	12.8	88
10	Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Human Molecular Genetics, 2015, 24, 5589-5602.	2.9	67
11	Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1121-1129.	2.5	56
12	Germline DNA Repair Gene Mutations in Young-onset Prostate Cancer Cases in the UK: Evidence for a More Extensive Genetic Panel. European Urology, 2019, 76, 329-337.	1.9	48
13	Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nature Communications, 2018, 9, 4616.	12.8	43
14	Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease. British Journal of Cancer, 2018, 119, 96-104.	6.4	40
15	Germline Sequencing DNA Repair Genes in 5545 Men With Aggressive and Nonaggressive Prostate Cancer. Journal of the National Cancer Institute, 2021, 113, 616-625.	6. 3	40
16	Rare Germline Variants in ATM Predispose to Prostate Cancer: A PRACTICAL Consortium Study. European Urology Oncology, 2021, 4, 570-579.	5.4	38
17	Genome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21. Human Genetics, 2016, 135, 923-938.	3.8	37
18	Clinical implications of family history of prostate cancer and genetic risk single nucleotide polymorphism (<scp>SNP</scp>) profiles in an active surveillance cohort. BJU International, 2013, 112, 666-673.	2.5	34

#	Article	IF	CITATIONS
19	Fine-Mapping the HOXB Region Detects Common Variants Tagging a Rare Coding Allele: Evidence for Synthetic Association in Prostate Cancer. PLoS Genetics, 2014, 10, e1004129.	3.5	34
20	Homeobox B13 G84E Mutation and Prostate Cancer Risk. European Urology, 2019, 75, 834-845.	1.9	28
21	The PROFILE Feasibility Study: Targeted Screening of Men With a Family History of Prostate Cancer. Oncologist, 2016, 21, 716-722.	3.7	27
22	Gene and pathway level analyses of germline DNA-repair gene variants and prostate cancer susceptibility using the iCOGS-genotyping array. British Journal of Cancer, 2016, 114, 945-952.	6.4	17
23	Locus Explorer: a user-friendly tool for integrated visualization of human genetic association data and biological annotations. Bioinformatics, 2016, 32, 949-951.	4.1	13
24	Prostate-specific antigen velocity in a prospective prostate cancer screening study of men with genetic predisposition. British Journal of Cancer, 2018, 118, 266-276.	6.4	12
25	Prostate cancer risk in men of differing genetic ancestry and approaches to disease screening and management in these groups. British Journal of Cancer, 2022, 126, 1366-1373.	6.4	12
26	Abstract 2546: Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression, 2013, , .		1
27	Relationship of self-reported body size and shape with risk for prostate cancer: A UK case-control study. PLoS ONE, 2020, 15, e0238928.	2.5	O
28	Abstract 2612: The PROFILE study; Germline genetic profiling: Correlation with targeted prostate cancer screening and treatment. , 2012, , .		0
29	Abstract 4495: Clinical implications of family history of prostate cancer in an active surveillance cohort., 2012,,.		O