
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6351802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine. Critical Reviews in Biotechnology, 2014, 34, 180-196.	5.1	174
2	Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Advances, 2016, 6, 24995-25014.	1.7	160
3	AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen. Biosensors and Bioelectronics, 2018, 107, 211-217.	5.3	149
4	Electrochemical Biosensors for Medical and Food Applications. Electroanalysis, 2008, 20, 616-626.	1.5	143
5	Emerging Loop-Mediated Isothermal Amplification-Based Microchip and Microdevice Technologies for Nucleic Acid Detection. ACS Biomaterials Science and Engineering, 2016, 2, 278-294.	2.6	141
6	Bacteria Screening, Viability, And Confirmation Assays Using Bacteriophage-Impedimetric/Loop-Mediated Isothermal Amplification Dual-Response Biosensors. Analytical Chemistry, 2013, 85, 4893-4901.	3.2	117
7	A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst, The, 2012, 137, 5749.	1.7	114
8	Microfluidic electrochemical assay for rapid detection and quantification of Escherichia coli. Biosensors and Bioelectronics, 2012, 31, 523-528.	5.3	110
9	Meat species identification based on the loop mediated isothermal amplification and electrochemical DNA sensor. Food Control, 2010, 21, 599-605.	2.8	104
10	Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Critical Reviews in Biotechnology, 2016, 36, 1-11.	5.1	101
11	Real-time electrochemical detection of pathogen DNA using electrostatic interaction of a redox probe. Analyst, The, 2013, 138, 907-915.	1.7	93
12	A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection. Analyst, The, 2014, 139, 482-487.	1.7	92
13	Trends and Advances in Electrochemiluminescence Nanobiosensors. Sensors, 2018, 18, 166.	2.1	85
14	Colorimetric Nucleic Acid Detection on Paper Microchip Using Loop Mediated Isothermal Amplification and Crystal Violet Dye. ACS Sensors, 2017, 2, 1713-1720.	4.0	79
15	Trends in Paper-based Electrochemical Biosensors: From Design to Application. Analytical Sciences, 2018, 34, 7-18.	0.8	79
16	From market to food plate: Current trusted technology and innovations in halal food analysis. Trends in Food Science and Technology, 2016, 58, 55-68.	7.8	75
17	Electrochemical genosensor for the rapid detection of GMO using loop-mediated isothermal amplification. Analyst, The, 2009, 134, 966.	1.7	71
18	High-throughput real-time electrochemical monitoring of LAMP for pathogenic bacteria detection. Biosensors and Bioelectronics, 2014, 58, 101-106.	5.3	66

#	Article	IF	CITATIONS
19	Electrochemical DNA biosensor using a disposable electrochemical printed (DEP) chip for the detection of SNPs from unpurified PCR amplicons. Analyst, The, 2007, 132, 431.	1.7	63
20	A highly sensitive gold nanoparticle bioprobe based electrochemical immunosensor using screen printed graphene biochip. RSC Advances, 2014, 4, 58460-58466.	1.7	62
21	Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Critical Reviews in Biotechnology, 2019, 39, 50-66.	5.1	62
22	Trends and advances in food analysis by real-time polymerase chain reaction. Journal of Food Science and Technology, 2016, 53, 2196-2209.	1.4	61
23	A label free electrochemical immunosensor for sensitive detection of porcine serum albumin as a marker for pork adulteration in raw meat. Food Chemistry, 2016, 206, 197-203.	4.2	59
24	A novel, sensitive and label-free loop-mediated isothermal amplification detection method for nucleic acids using luminophore dyes. Biosensors and Bioelectronics, 2016, 86, 346-352.	5.3	54
25	A carbon nanofiber-based label free immunosensor for high sensitive detection of recombinant bovine somatotropin. Biosensors and Bioelectronics, 2015, 70, 48-53.	5.3	45
26	Meat species identification using DNA-redox electrostatic interactions and non-specific adsorption on graphene biochips. Food Control, 2016, 61, 70-78.	2.8	40
27	A Simple DNA-based Electrochemical Biosensor for Highly Sensitive Detection of Ciprofloxacin Using Disposable Graphene. Analytical Sciences, 2016, 32, 687-693.	0.8	35
28	Meat species identification using DNA-luminol interaction and their slow diffusion onto the biochip surface. Food Chemistry, 2018, 248, 29-36.	4.2	35
29	Combining a gold nanoparticle-polyethylene glycol nanocomposite and carbon nanofiber electrodes to develop a highly sensitive salivary secretory immunoglobulin A immunosensor. Sensors and Actuators B: Chemical, 2018, 255, 557-563.	4.0	34
30	Gold-microrods/Pd-nanoparticles/polyaniline-nanocomposite-interface as a peroxidase-mimic for sensitive detection of tropomyosin. Biosensors and Bioelectronics, 2020, 155, 112108.	5.3	34
31	Paper-based rapid detection of pork and chicken using LAMP–magnetic bead aggregates. Analytical Methods, 2016, 8, 2391-2399.	1.3	33
32	A highly sensitive and label-free electrochemiluminescence immunosensor for beta 2-microglobulin. Analytical Methods, 2017, 9, 2570-2577.	1.3	32
33	Current progresses and trends in carbon nanomaterialsâ€based electrochemical and electrochemiluminescence biosensors. Journal of the Chinese Chemical Society, 2020, 67, 937-960.	0.8	32
34	Recent developments towards portable point-of-care diagnostic devices for pathogen detection. Sensors & Diagnostics, 2022, 1, 87-105.	1.9	31
35	A highly sensitive electrochemical detection of human chorionic gonadotropin on a carbon nano-onions/gold nanoparticles/polyethylene glycol nanocomposite modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2019, 833, 462-470.	1.9	29
36	Development of fast and sensitive real-time qPCR assay based on a novel probe for detection of porcine DNA in food sample. LWT - Food Science and Technology, 2017, 84, 686-692.	2.5	25

#	Article	IF	CITATIONS
37	Nanomaterials as signal amplification elements in aptamer-based electrochemiluminescent biosensors. Bioelectrochemistry, 2022, 147, 108170.	2.4	20
38	Enzyme-free Gold-silver Core-shell Nanozyme Immunosensor for the Detection of Haptoglobin. Analytical Sciences, 2018, 34, 1257-1263.	0.8	18
39	An ultra-sensitive label-free electrochemiluminescence CKMB immunosensor using a novel nanocomposite-modified printed electrode. RSC Advances, 2019, 9, 34283-34292.	1.7	18
40	Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors. Critical Reviews in Biotechnology, 2022, 42, 794-812.	5.1	18
41	Recent Trends in Design and Development of Nanomaterial-based Aptasensors. Biointerface Research in Applied Chemistry, 2021, 11, 14057-14077.	1.0	17
42	Label-free Electrochemical Detection for Food Allergen using Screen Printed Carbon Electrode. Electrochemistry, 2008, 76, 606-609.	0.6	15
43	A Highly Sensitive Label-free Aptasensor Based on Gold Nanourchins and Carbon Nanohorns for the Detection of Lipocalin-2 (LCN-2). Analytical Sciences, 2021, 37, 825-831.	0.8	14
44	Fabrication of label-free electrochemical food biosensor for the sensitive detection of ovalbumin on nanocomposite-modified graphene electrode. Biointerface Research in Applied Chemistry, 2019, 9, 4655-4662.	1.0	14
45	A flexible and low-cost polypropylene pouch for naked-eye detection of herpes simplex viruses. Analyst, The, 2015, 140, 931-937.	1.7	13
46	Electrochemiluminescence immunosensor for tropomyosin using carbon nanohorns/Nafion/Fe3O4@Pd screen-printed electrodes. Mikrochimica Acta, 2020, 187, 456.	2.5	13
47	The role of copper nanoparticles decorating polydopamine/graphene film as catalyst in the enhancement of uric acid sensing. Journal of Electroanalytical Chemistry, 2021, 893, 115322.	1.9	12
48	Trends in the development of immunoassays for mycotoxins and food allergens using gold and carbon nanostructured material. , 2022, 1, 100069.		12
49	Electrochemical Detection of Î²â€Łactoglobulin Allergen Using Titanium Dioxide/Carbon Nanochips/Gold Nanocompositeâ€based Biosensor. Electroanalysis, 2022, 34, 684-691.	1.5	11
50	A solid-state electrochemiluminescence aptasensor for β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed sensor. Mikrochimica Acta, 2022, 189, 165.	2.5	11
51	Microfluidic biosensors for high throughput screening of pathogens in food. , 2015, , 327-357.		10
52	Electrochemiluminescence study of AuNPs/CdTe-QDs/SWCNTs/chitosan nanocomposite modified carbon nanofiber screen-printed electrode with [Ru(bpy)3]2+/TPrA. Inorganic Chemistry Communication, 2019, 106, 54-60.	1.8	10
53	Introduction to Food Biosensors. Food Chemistry, Function and Analysis, 2016, , 1-21.	0.1	10
54	Recent trends and developments of PCR-based methods for the detection of food-borne Salmonella bacteria and Norovirus. Journal of Food Science and Technology, 2022, 59, 4570-4582.	1.4	10

#	Article	IF	CITATIONS
55	HLAâ€A, â€B and â€DRB1 allele frequencies in the Bangladeshi population. Tissue Antigens, 2008, 72, 115-119.	1.0	9
56	A Label-free Cardiac Troponin T Electrochemiluminescence Immunosensor Enhanced by Graphene Nanoplatelets. Analytical Sciences, 2019, 35, 973-978.	0.8	9
57	Efficient double electrochemiluminescence quenching based label-free highly sensitive detection of haptoglobin on a novel nanocomposite modified carbon nanofibers interface. Sensing and Bio-Sensing Research, 2019, 24, 100284.	2.2	9
58	Graphene Nanoplatelets/Chitosan-Modified Electrochemical Immunosensor for the Label-Free Detection of Haptoglobin. IEEE Sensors Journal, 2021, 21, 4176-4183.	2.4	9
59	Electrochemiluminescence nanoimmunosensor for CD63 protein using a carbon nanochips/iron oxide/nafion-nanocomposite modified mesoporous carbon interface. Measurement: Journal of the International Measurement Confederation, 2021, 170, 108755.	2.5	8
60	Colorimetric assay for urinary track infection disease diagnostic on flexible substrate. , 2012, , .		6
61	Fast and Sensitive Real-time PCR-based Detection of Porcine DNA in Food Samples by Using EvaGreen Dye. Food Science and Technology Research, 2018, 24, 803-810.	0.3	6
62	Graphene Nanoplatelets-Based Aptamer Biochip for the Detection of Lipocalin-2. IEEE Sensors Journal, 2019, 19, 9592-9599.	2.4	6
63	Single Wall Carbon Nanotube and Magnetic Bead Based Electrochemical Immunosensor for Sensitive Detection of Salivary Secretory Immunoglobulin A. Current Analytical Chemistry, 2018, 14, 399-405.	0.6	6
64	Rapid detection of pork DNA in food samples using reusable electrochemical sensor. Scientia Bruneiana, 0, 15, .	0.1	5
65	Construction of branched DNA for SNP determination on glass-chip using photochemical ligation. Biochip Journal, 2011, 5, 206-213.	2.5	4
66	CHAPTER 16. Isothermal DNA Amplification Strategies for Food Biosensors. Food Chemistry, Function and Analysis, 2016, , 367-392.	0.1	4
67	Novel nanocomposite of spiky-shaped gold nanourchins/ titanium dioxide/nafion for amplified signal and efficient electrochemiluminescence detection of ovomucoid. Bioelectrochemistry, 2022, 147, 108172.	2.4	4
68	Nanobioremediation: Ecofriendly Application of Nanomaterials. , 2019, , 3523-3535.		3
69	Electrochemical Study of Dimensional Specific Carbon Nanomaterials Modified Glassy Carbon Electrode for Highly Sensitive Label-free Detection of Immunoglobulin A. Current Analytical Chemistry, 2020, 16, 833-842.	0.6	3
70	An Eva Green Real-Time PCR Assay for Porcine DNA Analysis in Raw and Processed Foods. Malaysian Journal of Halal Research, 2022, 5, 33-39.	0.3	3
71	Nanobioremediation: Ecofriendly Application of Nanomaterials. , 2018, , 1-13.		2
72	Graphene Nanoplatelets-Based Aptamer Biochip for the Detection of Lipocalin-2. , 2018, , .	_	2

#	Article	IF	CITATIONS
73	Carbon Nanomaterials for Electrochemiluminescence-Based Immunosensors: Recent Advances and Applications. , 2020, , 71-90.		2
74	Point-of-Care Devices. , 2013, , 372-380.		1
75	A new mathematical model for equivalent salt deposit density and chemical anions and cations of busbar insulators. Electrical Engineering, 2018, 100, 1277-1285.	1.2	1
76	Nanobioremediation: Ecofriendly Application of Nanomaterials. , 2018, , 1-14.		1
77	Apolipoprotein E (Apo E) Gene Polymorphism in the Bangladeshi Population and its Comparison with Other Asian Populations. Journal of Medical Sciences (Faisalabad, Pakistan), 2006, 6, 203-208.	0.0	1
78	Characterization of immobilized DNA on sulfur-passivated InAs surfaces. Materials Research Society Symposia Proceedings, 2011, 1301, 259.	0.1	0
79	High throughput low cost electrochemical device for S.aureus bacteria detection. , 2013, , .		0
80	CHAPTER 5. Bionanotechnology-Based Colorimetric Sensors for Food Analysis. Food Chemistry, Function and Analysis, 2016, , 104-130.	0.1	0
81	Nanotechnology For Sensitive Detection Of The Carcinoembryonic Antigen: A Cancer Biomarker. , 2018, , .		0
82	Electrochemical nano-aptasensor as potential diagnostic device for thrombin. , 2022, , 105-141.		0