
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6351742/publications.pdf Version: 2024-02-01

ΙΠΝΛΠ ΖΗΕΝΟ

#	Article	IF	CITATIONS
1	A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmospheric Environment, 2009, 43, 5112-5122.	1.9	399
2	Speciated VOC Emission Inventory and Spatial Patterns of Ozone Formation Potential in the Pearl River Delta, China. Environmental Science & Technology, 2009, 43, 8580-8586.	4.6	224
3	Ground-level ozone in the Pearl River Delta region: Analysis of data from a recently established regional air quality monitoring network. Atmospheric Environment, 2010, 44, 814-823.	1.9	164
4	Ambient Ozone Control in a Photochemically Active Region: Short-Term Despiking or Long-Term Attainment?. Environmental Science & Technology, 2016, 50, 5720-5728.	4.6	159
5	Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Science of the Total Environment, 2013, 456-457, 127-136.	3.9	151
6	Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Science of the Total Environment, 2015, 530-531, 393-402.	3.9	144
7	Characterization of PM 2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China. Atmospheric Research, 2016, 167, 208-215.	1.8	112
8	Trends, temporal and spatial characteristics, and uncertainties in biomass burning emissions in the Pearl River Delta, China. Atmospheric Environment, 2011, 45, 4051-4059.	1.9	102
9	Science–policy interplay: Air quality management in the Pearl River Delta region and Hong Kong. Atmospheric Environment, 2013, 76, 3-10.	1.9	102
10	Emission trends and source characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009. Atmospheric Environment, 2013, 76, 11-20.	1.9	98
11	Temporal, spatial characteristics and uncertainty of biogenic VOC emissions in the Pearl River Delta region, China. Atmospheric Environment, 2010, 44, 1960-1969.	1.9	95
12	Importance of NOx control for peak ozone reduction in the Pearl River Delta region. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9428-9443.	1.2	94
13	An AIS-based high-resolution ship emission inventory and its uncertainty in Pearl River Delta region, China. Science of the Total Environment, 2016, 573, 1-10.	3.9	94
14	Recent developments of anthropogenic air pollutant emission inventories in Guangdong province, China. Science of the Total Environment, 2018, 627, 1080-1092.	3.9	88
15	Concentrations and sources of non-methane hydrocarbons (NMHCs) from 2005 to 2013 in Hong Kong: A multi-year real-time data analysis. Atmospheric Environment, 2015, 103, 196-206.	1.9	84
16	Potential sources of nitrous acid (HONO) and their impacts on ozone: A WRFâ€Chem study in a polluted subtropical region. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3645-3662.	1.2	84
17	Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China. Science of the Total Environment, 2017, 583, 19-28.	3.9	78
18	Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south China. Environmental Pollution, 2018, 233, 806-819.	3.7	74

#	Article	IF	CITATIONS
19	Quantitative impacts of meteorology and precursor emission changes on the long-term trend of ambient ozone over the Pearl River Delta, China, and implications for ozone control strategy. Atmospheric Chemistry and Physics, 2019, 19, 12901-12916.	1.9	73
20	Assessment of motor vehicle emission control policies using Model-3/CMAQ model for the Pearl River Delta region, China. Atmospheric Environment, 2011, 45, 1740-1751.	1.9	70
21	A newly integrated dataset of volatile organic compounds (VOCs) source profiles and implications for the future development of VOCs profiles in China. Science of the Total Environment, 2021, 793, 148348.	3.9	69
22	A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta Region, China. Science of the Total Environment, 2015, 514, 426-438.	3.9	66
23	How the OH reactivity affects the ozone production efficiency: case studies in Beijing and Heshan, China. Atmospheric Chemistry and Physics, 2017, 17, 7127-7142.	1.9	60
24	Proteins and Amino Acids in Fine Particulate Matter in Rural Guangzhou, Southern China: Seasonal Cycles, Sources, and Atmospheric Processes. Environmental Science & Technology, 2017, 51, 6773-6781.	4.6	58
25	Evolution of anthropogenic air pollutant emissions in Guangdong Province, China, from 2006 to 2015. Atmospheric Chemistry and Physics, 2019, 19, 11701-11719.	1.9	56
26	Demand-driven air pollutant emissions for a fast-developing region in China. Applied Energy, 2017, 204, 131-142.	5.1	52
27	Measurement report: Important contributions of oxygenated compounds to emissions and chemistry of volatile organic compounds in urban air. Atmospheric Chemistry and Physics, 2020, 20, 14769-14785.	1.9	50
28	Modeling study of ozone source apportionment over the Pearl River Delta in 2015. Environmental Pollution, 2019, 253, 393-402.	3.7	48
29	Source contributions to PM2.5 in Guangdong province, China by numerical modeling: Results and implications. Atmospheric Research, 2017, 186, 63-71.	1.8	47
30	Quantification of Variability and Uncertainty in Air Pollutant Emission Inventories: Method and Case Study for Utility NO _x Emissions. Journal of the Air and Waste Management Association, 2002, 52, 1083-1095.	0.9	46
31	Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal. Atmospheric Chemistry and Physics, 2018, 18, 15017-15046.	1.9	46
32	Mercury emission inventory and its spatial characteristics in the Pearl River Delta region, China. Science of the Total Environment, 2011, 412-413, 214-222.	3.9	45
33	Anthropogenic atmospheric toxic metals emission inventory and its spatial characteristics in Guangdong province, China. Science of the Total Environment, 2019, 670, 1146-1158.	3.9	45
34	Seasonal cycles of secondary organic aerosol tracers in rural Guangzhou, Southern China: The importance of atmospheric oxidants. Environmental Pollution, 2018, 240, 884-893.	3.7	44
35	Probabilistic Analysis of Driving Cycle-Based Highway Vehicle Emission Factors. Environmental Science & Technology, 2002, 36, 5184-5191.	4.6	41
36	Development of an emission processing system for the Pearl River Delta Regional air quality modeling using the SMOKE model: Methodology and evaluation. Atmospheric Environment, 2011, 45, 5079-5089.	1.9	40

#	Article	IF	CITATIONS
37	Decadal evolution of ship emissions in China from 2004 to 2013 by using an integrated AIS-based approach and projection to 2040. Atmospheric Chemistry and Physics, 2018, 18, 6075-6093.	1.9	38
38	An updated model-ready emission inventory for Guangdong Province by incorporating big data and mapping onto multiple chemical mechanisms. Science of the Total Environment, 2021, 769, 144535.	3.9	35
39	Neutral polyfluoroalkyl substances in the atmosphere over the northern South China Sea. Environmental Pollution, 2016, 214, 449-455.	3.7	34
40	The Pearl River Delta Regional Air Quality Monitoring Network - Regional Collaborative Efforts on Joint Air Quality Management. Aerosol and Air Quality Research, 2013, 13, 1582-1597.	0.9	34
41	Road-Network-Based Spatial Allocation of On-Road Mobile Source Emissions in the Pearl River Delta Region, China, and Comparisons with Population-Based Approach. Journal of the Air and Waste Management Association, 2009, 59, 1405-1416.	0.9	32
42	Role of export industries on ozone pollution and its precursors in China. Nature Communications, 2020, 11, 5492.	5.8	30
43	Quantifying the impact of daily mobility on errors in air pollution exposure estimation using mobile phone location data. Environment International, 2020, 141, 105772.	4.8	30
44	High resolution of black carbon and organic carbon emissions in the Pearl River Delta region, China. Science of the Total Environment, 2012, 438, 189-200.	3.9	29
45	High Gaseous Nitrous Acid (HONO) Emissions from Light-Duty Diesel Vehicles. Environmental Science & Technology, 2021, 55, 200-208.	4.6	29
46	Site location optimization of regional air quality monitoring network in china: methodology and case study. Journal of Environmental Monitoring, 2011, 13, 3185.	2.1	25
47	Characterization of VOC emissions from construction machinery and river ships in the Pearl River Delta of China. Journal of Environmental Sciences, 2020, 96, 138-150.	3.2	25
48	Characterization of particulate smoke and the potential chemical fingerprint of non-road construction equipment exhaust emission in China. Science of the Total Environment, 2020, 723, 137967.	3.9	25
49	Modeling inorganic nitrogen deposition in Guangdong province, China. Atmospheric Environment, 2015, 109, 147-160.	1.9	23
50	Regional discrepancies in spatiotemporal variations and driving forces of open crop residue burning emissions in China. Science of the Total Environment, 2019, 671, 536-547.	3.9	21
51	Molecular characterization of polar organic aerosol constituents in off-road engine emissions using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS): implications for source apportionment. Atmospheric Chemistry and Physics, 2019, 19, 13945-13956.	1.9	21
52	Species-specified VOC emissions derived from a gridded study in the Pearl River Delta, China. Scientific Reports, 2018, 8, 2963.	1.6	19
53	Characteristics of inorganic aerosol formation over ammonia-poor and ammonia-rich areas in the Pearl River Delta region, China. Atmospheric Environment, 2018, 177, 120-131.	1.9	19
54	Variability in real-world emissions and fuel consumption by diesel construction vehicles and policy implications. Science of the Total Environment, 2021, 786, 147256.	3.9	19

#	Article	IF	CITATIONS
55	Top-down estimates of benzene and toluene emissions in the Pearl River Delta and Hong Kong, China. Atmospheric Chemistry and Physics, 2016, 16, 3369-3382.	1.9	18
56	Insight into the Variability of the Nitrogen Isotope Composition of Vehicular NO _{<i>x</i>} in China. Environmental Science & Technology, 2020, 54, 14246-14253.	4.6	17
57	Exposure assessment, chemical characterization and source identification of PM2.5 for school children and industrial downwind residents in Guangzhou, China. Environmental Geochemistry and Health, 2014, 36, 385-397.	1.8	15
58	Reconstructed Light Extinction Coefficients of Fine Particulate Matter in Rural Guangzhou, Southern China. Aerosol and Air Quality Research, 2016, 16, 1981-1990.	0.9	15
59	A Feasible Methodological Framework for Uncertainty Analysis and Diagnosis of Atmospheric Chemical Transport Models. Environmental Science & Technology, 2019, 53, 3110-3118.	4.6	15
60	Reconciling discrepancies in the source characterization of VOCs between emission inventories and receptor modeling. Science of the Total Environment, 2018, 628-629, 697-706.	3.9	14
61	Numerical model to quantify biogenic volatile organic compound emissions: The Pearl River Delta region as a case study. Journal of Environmental Sciences, 2016, 46, 72-82.	3.2	13
62	Eighteen-year trends of local and non-local impacts to ambient PM10 in Hong Kong based on chemical speciation and source apportionment. Atmospheric Research, 2018, 214, 1-9.	1.8	13
63	Characteristics of the source apportionment of primary and secondary inorganic PM2.5 in the Pearl River Delta region during 2015 by numerical modeling. Environmental Pollution, 2020, 267, 115418.	3.7	13
64	Insight into the characteristics of carbonaceous aerosols at urban and regional sites in the downwind area of Pearl River Delta region, China. Science of the Total Environment, 2021, 778, 146251.	3.9	13
65	A New Combined Stepwise-Based High-Order Decoupled Direct and Reduced-Form Method To Improve Uncertainty Analysis in PM2.5 Simulations. Environmental Science & Technology, 2017, 51, 3852-3859.	4.6	12
66	Budget of nitrous acid (HONO) at an urban site in the fall season of Guangzhou, China. Atmospheric Chemistry and Physics, 2022, 22, 8951-8971.	1.9	12
67	Observation-based analysis of ozone production sensitivity for two persistent ozone episodes in Guangdong, China. Atmospheric Chemistry and Physics, 2022, 22, 8403-8416.	1.9	12
68	A New Portable Instrument for Online Measurements of Formaldehyde: From Ambient to Mobile Emission Sources. Environmental Science and Technology Letters, 2020, 7, 292-297.	3.9	10
69	Near-real-time estimation of hourly open biomass burning emissions in China using multiple satellite retrievals. Science of the Total Environment, 2022, 817, 152777.	3.9	10
70	A mass-balance-based emission inventory of non-methane volatile organic compounds (NMVOCs) for solvent use in China. Atmospheric Chemistry and Physics, 2021, 21, 13655-13666.	1.9	9
71	Ozone changes in response to the heavy-duty diesel truck control in the Pearl River Delta. Atmospheric Environment, 2014, 88, 269-274.	1.9	8
72	Emission source-based ozone isopleth and isosurface diagrams and their significance in ozone pollution control strategies. Journal of Environmental Sciences, 2021, 105, 138-149.	3.2	6

#	Article	IF	CITATIONS
73	Road type-based driving cycle development and application to estimate vehicle emissions for passenger cars in Guangzhou. Atmospheric Pollution Research, 2021, 12, 101138.	1.8	6
74	An optimized data fusion method and its application to improve lateral boundary conditions in winter for Pearl River Delta regional PM2.5 modeling, China. Atmospheric Environment, 2018, 180, 59-68.	1.9	5
75	Environmental Controls to Soil Heavy Metal Pollution Vary at Multiple Scales in a Highly Urbanizing Region in Southern China. Sensors, 2022, 22, 4496.	2.1	5
76	Status and quality evaluation of precursor emission inventories for PM _{2.5} and ozone in China. Chinese Science Bulletin, 2022, 67, 1978-1994.	0.4	4
77	A Dynamic Dust Emission Allocation Method and Holiday Profiles Applied to Emission Processing for Improving Air Quality Model Performance. Aerosol and Air Quality Research, 2019, 19, 2531-2542.	0.9	3
78	A meteorologically adjusted ensemble Kalman filter approach for inversing daily emissions: A case study in the Pearl River Delta, China. Journal of Environmental Sciences, 2022, 114, 233-248.	3.2	2
79	The impact of chlorine chemistry combined with heterogeneous N ₂ O ₅ reactions on air quality in China. Atmospheric Chemistry and Physics, 2022, 22, 3743-3762.	1.9	2
80	Direct identification of total and missing OH reactivities from light-duty gasoline vehicle exhaust in China based on LP-LIF measurement. Journal of Environmental Sciences, 2023, 133, 107-117.	3.2	2
81	Upgrading Emission Standards Inadvertently Increased OH Reactivity from Light-Duty Diesel Truck Exhaust in China: Evidence from Direct LP-LIF Measurement. Environmental Science & Technology, 2022, 56, 9968-9977.	4.6	1