
Rong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6351516/publications.pdf Version: 2024-02-01

PONC 7HANC

#	Article	lF	CITATIONS
1	Improved Sensitivity of Flexible Conductive Composites Throughout the Working Strain Range Based on Bioinspired Strain Redistribution. ACS Applied Polymer Materials, 2022, 4, 1608-1616.	4.4	1
2	Enhanced Specific Capacitance and Stability of Polyaniline by Nafion Doping. ChemElectroChem, 2022, 9, .	3.4	2
3	Preparation of CNTs/PP@Gr composites with a segregated structure and enhanced electrical and thermal conductive properties by the Pickering emulsion method. Composites Science and Technology, 2022, 222, 109374.	7.8	11
4	Polyethyleneimine-filled sepiolite nanorods-embedded poly(2,5-benzimidazole) composite membranes for wide-temperature PEMFCs. Journal of Cleaner Production, 2022, 359, 131977.	9.3	12
5	Polypyrrole nanowires as a cathode microporous layer for direct methanol fuel cell to enhance oxygen transport. International Journal of Energy Research, 2021, 45, 3375-3384.	4.5	9
6	Reticulated polyaniline nanowires as a cathode microporous layer for high-temperature PEMFCs. International Journal of Hydrogen Energy, 2021, 46, 8802-8809.	7.1	12
7	The tunable sensing behaviors of flexible conductive PDMS/NCG composites via regulation of filler size prepared by a facile sedimentation method. Composites Science and Technology, 2021, 216, 109037.	7.8	4
8	Hydrophilic PDMS with a sandwich-like structure and no loss of mechanical properties and optical transparency. Applied Surface Science, 2020, 503, 144126.	6.1	14
9	Designing high electrochemical surface area between polyaniline and hydrogel polymer electrolyte for flexible supercapacitors. Applied Surface Science, 2020, 507, 145135.	6.1	60
10	Facile one-step preparation of laminated PDMS based flexible strain sensors with high conductivity and sensitivity via filler sedimentation. Composites Science and Technology, 2020, 186, 107933.	7.8	33
11	Bioinspired design of flexible strain sensor with high performance based on gradient filler distributions. Composites Science and Technology, 2020, 200, 108319.	7.8	18
12	Polyaniline Nanorod Arrays as a Cathode Material for High-Rate Zinc-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 12360-12367.	5.1	32
13	In situ synthesis of star copolymers consisting of a <scp>polyhedral oligomeric silsesquioxane</scp> core and poly(2,5â€benzimidazole) arms for highâ€ŧemperature proton exchange membrane fuel cells. International Journal of Energy Research, 2020, 44, 8769-8780.	4.5	6
14	Homogeneously dispersed composites of hydroxyapatite nanorods and poly(lactic acid) and their mechanical properties and crystallization behavior. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105841.	7.6	18
15	Design of sepiolite-supported ionogel-embedded composite membranes without proton carrier wastage for wide-temperature-range operation of proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2019, 7, 15288-15301.	10.3	54
16	Preparation and properties of flexible conductive polydimethylsiloxane composites containing hybrid fillers. Polymer Bulletin, 2019, 76, 6487-6501.	3.3	13
17	Poly(2,5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range. Journal of Membrane Science, 2019, 574, 282-298.	8.2	57
18	Highly flexible strain sensors based on polydimethylsiloxane/carbon nanotubes (CNTs) prepared by a swelling/permeating method and enhanced sensitivity by CNTs surface modification. Composites Science and Technology, 2019, 171, 218-225.	7.8	62

Rong Zhang

#	Article	IF	CITATIONS
19	Improved electrical heating properties for polymer nanocomposites by electron beam irradiation. Polymer Bulletin, 2018, 75, 2847-2863.	3.3	10
20	Improved cell morphology and thermal properties of expanded polypropylene beads by the addition of PP with a high melting point. Journal of Applied Polymer Science, 2017, 134, 45121.	2.6	11
21	Enhanced electrical properties of graphite/ABS composites prepared via supercritical CO2 processing. Polymer Bulletin, 2017, 74, 4279-4295.	3.3	6
22	Preparation and characterization of ABPBI/POSS nanocomposites for PEMFCs. , 2016, , .		0
23	Magnetic Behaviors of Mg- and Zn-Doped Fe ₃ O ₄ Nanoparticles Estimated in Terms of Crystal Domain Size, Dielectric Response, and Application of Fe ₃ O ₄ /Carbon Nanotube Composites to Anodes for Lithium Ion Batteries. Iournal of Physical Chemistry C. 2015, 119, 26128-26142.	3.1	29
24	Effect of Î ³ -ray irradiation on the microstructure and self-heating property of carbon fiber/polyethylene composite films. Composites Part A: Applied Science and Manufacturing, 2015, 78, 174-180.	7.6	13
25	Synergetic effects of carbon nanotubes and carbon fibers on electrical and self-heating properties of high-density polyethylene composites. Journal of Materials Science, 2015, 50, 1565-1574.	3.7	35
26	Study on filler content dependence of the onset of positive temperature coefficient (PTC) effect of electrical resistivity for UHMWPE/LDPE/CF composites based on their DC and AC electrical behaviors. Polymer, 2014, 55, 2103-2112.	3.8	35
27	Considerable Different Frequency Dependence of Dynamic Tensile Modulus between Self-Heating (Joule Heat) and External Heating for Polymer–Nickel-Coated Carbon Fiber Composites. Journal of Physical Chemistry B, 2014, 118, 7047-7058.	2.6	7
28	Evaluation by tunneling effect for the temperature-dependent electric conductivity of polymer-carbon fiber composites with visco-elastic properties. Polymer Journal, 2013, 45, 1120-1134.	2.7	26
29	Positive temperature coefficient effect of polymer-carbon filler composites under self-heating evaluated quantitatively in terms of potential barrier height and width associated with tunnel current. Polymer, 2012, 53, 5197-5207.	3.8	29
30	Effect of Different Dye Baths and Dye-Structures on the Performance of Dye-Sensitized Solar Cells Based on Triphenylamine Dyes. Journal of Physical Chemistry C, 2008, 112, 11023-11033.	3.1	432