
Jesus M Pradillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6351299/publications.pdf Version: 2024-02-01

IFSUS M PDADILLO

#	Article	IF	CITATIONS
1	Toll-Like Receptor 4 Is Involved in Brain Damage and Inflammation After Experimental Stroke. Circulation, 2007, 115, 1599-1608.	1.6	534
2	Silent Information Regulator 1 Protects the Brain Against Cerebral Ischemic Damage. Stroke, 2013, 44, 2333-2337.	1.0	210
3	Toll-Like Receptor 4 Is Involved in Subacute Stress–Induced Neuroinflammation and in the Worsening of Experimental Stroke. Stroke, 2008, 39, 1314-1320.	1.0	166
4	Delayed Administration of Interleukin-1 Receptor Antagonist Reduces Ischemic Brain Damage and Inflammation in Comorbid Rats. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1810-1819.	2.4	122
5	Synthesis of Lipoxin A ₄ by 5-Lipoxygenase Mediates PPARγ-Dependent, Neuroprotective Effects of Rosiglitazone in Experimental Stroke. Journal of Neuroscience, 2009, 29, 3875-3884.	1.7	115
6	Tollâ€like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. Journal of Neurochemistry, 2009, 109, 287-294.	2.1	115
7	18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 503-511.	3.3	109
8	Pharmacological Modulation of Neutrophil Extracellular Traps Reverses Thrombotic Stroke tPA (Tissue-Type Plasminogen Activator) Resistance. Stroke, 2019, 50, 3228-3237.	1.0	84
9	TNFR1 Upregulation Mediates Tolerance after Brain Ischemic Preconditioning. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 193-203.	2.4	83
10	Myeloid cells as therapeutic targets in neuroinflammation after stroke: Specific roles of neutrophils and neutrophil–platelet interactions. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2150-2164.	2.4	83
11	A chronic treatment with CDP-choline improves functional recovery and increases neuronal plasticity after experimental stroke. Neurobiology of Disease, 2007, 26, 105-111.	2.1	76
12	3,4â€Methylenedioxymethamphetamine increases interleukinâ€1β levels and activates microglia in rat brain: studies on the relationship with acute hyperthermia and 5â€HT depletion. Journal of Neurochemistry, 2004, 89, 1445-1453.	2.1	69
13	Rosiglitazone-induced CD36 up-regulation resolves inflammation by PPARÎ ³ and 5-LO-dependent pathways. Journal of Leukocyte Biology, 2013, 95, 587-598.	1.5	66
14	Reparative effects of interleukin-1 receptor antagonist in young and aged/co-morbid rodents after cerebral ischemia. Brain, Behavior, and Immunity, 2017, 61, 117-126.	2.0	64
15	A cross-laboratory preclinical study on the effectiveness of interleukin-1 receptor antagonist in stroke. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 596-605.	2.4	61
16	Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia. Journal of Neuroinflammation, 2015, 12, 87.	3.1	59
17	Tollâ€like receptor 4 modulates cell migration and cortical neurogenesis after focal cerebral ischemia. FASEB Journal, 2014, 28, 4710-4718.	0.2	58
18	Cannabinoid Type-2 Receptor Drives Neurogenesis and Improves Functional Outcome After Stroke. Stroke, 2017, 48, 204-212.	1.0	58

JESUS M PRADILLO

#	Article	IF	CITATIONS
19	<i>Streptococcus pneumoniae</i> worsens cerebral ischemia via interleukin 1 and platelet glycoprotein Ibα. Annals of Neurology, 2014, 75, 670-683.	2.8	50
20	TLR4-Binding DNA Aptamers Show a Protective Effect against Acute Stroke in Animal Models. Molecular Therapy, 2018, 26, 2047-2059.	3.7	47
21	Citicoline (<scp>CDP</scp> â€eholine) increases <scp>S</scp> irtuin1 expression concomitant to neuroprotection in experimental stroke. Journal of Neurochemistry, 2013, 126, 819-826.	2.1	46
22	The Cannabinoid <i>WIN55212-2</i> Promotes Neural Repair After Neonatal Hypoxia–Ischemia. Stroke, 2010, 41, 2956-2964.	1.0	42
23	Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion. Neurochemistry International, 2012, 61, 1364-1369.	1.9	41
24	Delayed post-ischemic administration of CDP-choline increases EAAT2 association to lipid rafts and affords neuroprotection in experimental stroke. Neurobiology of Disease, 2008, 29, 123-131.	2.1	40
25	The Immune System in Stroke: Clinical Challenges and Their Translation to Experimental Research. Journal of NeuroImmune Pharmacology, 2013, 8, 867-887.	2.1	40
26	Neurorepair versus Neuroprotection in Stroke. Cerebrovascular Diseases, 2006, 21, 54-63.	0.8	38
27	Specific Features of SVZ Neurogenesis After Cortical Ischemia: a Longitudinal Study. Scientific Reports, 2017, 7, 16343.	1.6	35
28	TNFR1 mediates increased neuronal membrane EAAT3 expression after in vivo cerebral ischemic preconditioning. Neuroscience, 2006, 138, 1171-1178.	1.1	34
29	Daidzein has neuroprotective effects through ligand-binding-independent PPARÎ ³ activation. Neurochemistry International, 2012, 61, 119-127.	1.9	34
30	Toll-Like Receptor 4 Mediates Hemorrhagic Transformation After Delayed Tissue Plasminogen Activator Administration in In Situ Thromboembolic Stroke. Stroke, 2017, 48, 1695-1699.	1.0	33
31	ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets. Frontiers in Neuroscience, 2014, 8, 271.	1.4	32
32	TNF-alpha accounts for short-term persistence of oxidative status in rat brain after two weeks of repeated stress. European Journal of Neuroscience, 2004, 20, 1125-1130.	1.2	28
33	Toll-like receptor 4 regulates subventricular zone proliferation and neuroblast migration after experimental stroke. Brain, Behavior, and Immunity, 2019, 80, 573-582.	2.0	24
34	Imaging the role of toll-like receptor 4 on cell proliferation and inflammation after cerebral ischemia by positron emission tomography. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 702-708.	2.4	23
35	Multiâ€modal imaging of longâ€ŧerm recovery postâ€stroke by positron emission tomography and matrixâ€assisted laser desorption/ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 721-729.	0.7	15
36	Surgical manipulation compromises leukocyte mobilization responses and inflammation after experimental cerebral ischemia in mice. Frontiers in Neuroscience, 2013, 7, 271.	1.4	11

JESUS M PRADILLO

#	Article	IF	CITATIONS
37	Aumento de expresión y actividad de MMP-9 en rinosinusitis crónica con poliposis nasal. Acta Otorrinolaringológica Española, 2008, 59, 444-447.	0.2	10
38	Influence of metabolic syndrome on post-stroke outcome, angiogenesis and vascular function in old rats determined by dynamic contrast enhanced MRI. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1692-1706.	2.4	9
39	Plasma levels of 15dâ€PGJ ₂ are not altered in multiple sclerosis. European Journal of Neurology, 2009, 16, 1197-1201.	1.7	7
40	Increased Expression and Activity of MMP-9in Chronic Rhinosinusitis With Nasal Polyposis. Acta Otorrinolaringologica (English Edition), 2008, 59, 444-447.	0.1	0