
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6351176/publications.pdf Version: 2024-02-01

Πενιςημη Υγνς

#	Article	IF	CITATIONS
1	Structure and Signal Regulation Mechanism of Interspecies and Interkingdom Quorum Sensing System Receptors. Journal of Agricultural and Food Chemistry, 2022, 70, 429-445.	5.2	24
2	Contribution of quorum sensing to virulence and antibiotic resistance in zoonotic bacteria. Biotechnology Advances, 2022, 59, 107965.	11.7	16
3	Sub-Inhibitory Concentrations of Amoxicillin and Tylosin Affect the Biofilm Formation and Virulence of Streptococcus suis. International Journal of Environmental Research and Public Health, 2022, 19, 8359.	2.6	2
4	Immunogenicity and protective ability of RpoE against <i>Streptococcus suis</i> serotype 2. Journal of Applied Microbiology, 2021, 130, 1075-1083.	3.1	6
5	Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics. Science of the Total Environment, 2021, 763, 143031.	8.0	41
6	mRNA-Seq reveals the quorum sensing system luxS gene contributes to the environmental fitness of Streptococcus suis type 2. BMC Microbiology, 2021, 21, 111.	3.3	7
7	Regulatory mechanisms of sub-inhibitory levels antibiotics agent in bacterial virulence. Applied Microbiology and Biotechnology, 2021, 105, 3495-3505.	3.6	8
8	Comparison of the Glaesserella parasuis Virulence in Mice and Piglets. Frontiers in Veterinary Science, 2021, 8, 659244.	2.2	6
9	Evaluation of immune effect of Streptococcus suis biofilm-associated protein PDH. Veterinary Microbiology, 2021, 263, 109270.	1.9	6
10	Paeoniflorin reduce <i>luxS</i> /AI-2 system-controlled biofilm formation and virulence in <i>Streptococcus suis</i> . Virulence, 2021, 12, 3062-3073.	4.4	25
11	Identification and characterization of a Streptococcus suis immunogenic ornithine carbamoytransferase involved in bacterial adherence. Journal of Microbiology, Immunology and Infection, 2020, 53, 234-239.	3.1	9
12	Autoinducer-2 influences tetracycline resistance in Streptococcus suis by regulating the tet(M) gene via transposon Tn916. Research in Veterinary Science, 2020, 128, 269-274.	1.9	13
13	N-terminal Myristoylation Enhanced the Antimicrobial Activity of Antimicrobial Peptide PMAP-36PW. Frontiers in Cellular and Infection Microbiology, 2020, 10, 450.	3.9	9
14	Antibiotic resistance related to biofilm formation in Streptococcus suis. Applied Microbiology and Biotechnology, 2020, 104, 8649-8660.	3.6	18
15	The otc gene of Streptococcus suis plays an important role in biofilm formation, adhesion, and virulence in a murine model. Veterinary Microbiology, 2020, 251, 108925.	1.9	12
16	Enhancing the antibacterial activity of antimicrobial peptide PMAP-37(F34-R) by cholesterol modification. BMC Veterinary Research, 2020, 16, 419.	1.9	18
17	In vitro Mixed Biofilm of Streptococcus suis and Actinobacillus pleuropneumoniae Impacts Antibiotic Susceptibility and Modulates Virulence Factor Gene Expression. Frontiers in Microbiology, 2020, 11, 507.	3.5	17
18	Norfloxacin Sub-Inhibitory Concentration Affects Streptococcus suis Biofilm Formation and Virulence Gene Expression. Indian Journal of Animal Research, 2020, , .	0.1	2

#	Article	IF	CITATIONS
19	Identification of a novel protective antigen, 3-oxoacyl-[acyl-carrier-protein] synthase II of Streptococcus equi ssp. zooepidemicus which confers protective effects. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 71, 101493.	1.6	2
20	The Ferric Uptake Regulator Represses Type VI Secretion System Function by Binding Directly to the <i>clpV</i> Promoter in <i>Salmonella enterica</i> Serovar Typhimurium. Infection and Immunity, 2019, 87, .	2.2	22
21	Regulatory Mechanisms of the LuxS/AI-2 System and Bacterial Resistance. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	72
22	Advances in research on signal molecules regulating biofilms. World Journal of Microbiology and Biotechnology, 2019, 35, 130.	3.6	23
23	Pdh is involved in the cell division and Normal septation of Streptococcus suis. Microbiological Research, 2019, 228, 126304.	5.3	2
24	LuxS/AI-2 system is involved in fluoroquinolones susceptibility in Streptococcus suis through overexpression of efflux pump SatAB. Veterinary Microbiology, 2019, 233, 154-158.	1.9	29
25	<i>pdh</i> modulate virulence through reducing stress tolerance and biofilm formation of <i>Streptococcus suis</i> serotype 2. Virulence, 2019, 10, 588-599.	4.4	23
26	Infection with sodA mutant of S. Typhimurium leads to upâ€regulation of autophagy in Raw264Â∙7 macrophages. Letters in Applied Microbiology, 2019, 69, 11-15.	2.2	2
27	Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies. Applied Microbiology and Biotechnology, 2018, 102, 9121-9129.	3.6	39
28	The LuxS/AI-2 system of Streptococcus suis. Applied Microbiology and Biotechnology, 2018, 102, 7231-7238.	3.6	43
29	Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. Nature Microbiology, 2018, 3, 1054-1062.	13.3	139
30	Functional analysis of superoxide dismutase of <i>Salmonella</i> typhimurium in serum resistance and biofilm formation. Journal of Applied Microbiology, 2018, 125, 1526-1533.	3.1	11
31	Autotransporter MisL of Salmonella enterica serotype Typhimurium facilitates bacterial aggregation and biofilm formation. FEMS Microbiology Letters, 2018, 365, .	1.8	15
32	Widespread of NADC30-like PRRSV in China: Another Pandora's box for Chinese pig industry as the outbreak of highly pathogenic PRRSV in 2006?. Infection, Genetics and Evolution, 2017, 49, 12-13.	2.3	27
33	Identification of genes involved in Mycoplasma gallisepticum biofilm formation using mini-Tn4001-SGM transposon mutagenesis. Veterinary Microbiology, 2017, 198, 17-22.	1.9	11
34	Escherichia coli Type III Secretion System 2 ATPase EivC Is Involved in the Motility and Virulence of Avian Pathogenic Escherichia coli. Frontiers in Microbiology, 2016, 7, 1387.	3.5	55
35	Isolation, phylogenetic group, drug resistance, biofilm formation, and adherence genes of Escherichia coli from poultry in central China. Poultry Science, 2016, 95, 2895-2901.	3.4	28
36	Newcastle disease virus infection induces activation of the NLRP3 inflammasome. Virology, 2016, 496, 90-96.	2.4	22

#	Article	IF	CITATIONS
37	Identification and characterization of a Streptococcus equi ssp. zooepidemicus immunogenic GroEL protein involved in biofilm formation. Veterinary Research, 2016, 47, 50.	3.0	21
38	IbeR Facilitates Stress-Resistance, Invasion and Pathogenicity of Avian Pathogenic Escherichia coli. PLoS ONE, 2015, 10, e0119698.	2.5	10
39	Deletion of Invasion Protein B in Salmonella enterica Serovar Typhimurium Influences Bacterial Invasion and Virulence. Current Microbiology, 2015, 71, 687-692.	2.2	13
40	Crystal Structure and Identification of Two Key Amino Acids Involved in AI-2 Production and Biofilm Formation in Streptococcus suis LuxS. PLoS ONE, 2015, 10, e0138826.	2.5	27
41	DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli. Frontiers in Microbiology, 2014, 5, 588.	3.5	37
42	Selective capture of transcribed sequences in the functional gene analysis of microbial pathogens. Applied Microbiology and Biotechnology, 2014, 98, 9983-9992.	3.6	2
43	Detection and distribution of torque teno sus virus 1 in porcine reproductive and respiratory syndrome virus positive/negative pigs. Veterinary Microbiology, 2014, 172, 367-370.	1.9	5
44	Biofilm Formation of Streptococcus equi ssp. zooepidemicus and Comparative Proteomic Analysis of Biofilm and Planktonic Cells. Current Microbiology, 2014, 69, 227-233.	2.2	26
45	Biofilm Formation, Host-Cell Adherence, and Virulence Genes Regulation of Streptococcus suis in Response to Autoinducer-2 Signaling. Current Microbiology, 2014, 68, 575-580.	2.2	48
46	Bursin-like peptide (BLP) enhances H9N2 influenza vaccine induced humoral and cell mediated immune responses. Cellular Immunology, 2014, 292, 57-64.	3.0	12
47	Analysis of synonymous codon usage patterns in torque teno sus virus 1 (TTSuV1). Archives of Virology, 2013, 158, 145-154.	2.1	41
48	Identification of genes transcribed by Streptococcus equi ssp. zooepidemicus in infected porcine lung. Microbial Pathogenesis, 2013, 59-60, 7-12.	2.9	10
49	Contribution of fibronectin-binding protein to pathogenesis of <i>Streptococcus equi</i> ssp <i>. zooepidemicus</i> . Pathogens and Disease, 2013, 67, 174-183.	2.0	13
50	Overexpression of <i>luxS</i> Cannot Increase Autoinducer-2 Production, Only Affect the Growth and Biofilm Formation in <i>Streptococcus suis</i> . Scientific World Journal, The, 2013, 2013, 1-6.	2.1	25
51	Identification of Antigens Common to Streptococcus suis Serotypes 2 and 9 by Immunoproteomic Analysis. Journal of Integrative Agriculture, 2012, 11, 1517-1527.	3.5	1
52	Comparative Proteomic Analysis of Streptococcus suis Biofilms and Planktonic Cells That Identified Biofilm Infection-Related Immunogenic Proteins. PLoS ONE, 2012, 7, e33371.	2.5	50
53	Natural infection with torque teno sus virus 1 (TTSuV1) suppresses the immune response to porcine reproductive and respiratory syndrome virus (PRRSV) vaccination. Archives of Virology, 2012, 157, 927-933.	2.1	20
54	Reduced virulence is an important characteristic of biofilm infection of Streptococcus suis. FEMS Microbiology Letters, 2011, 316, 36-43.	1.8	74

#	Article	IF	CITATIONS
55	Functional analysis of luxS in Streptococcus suis reveals a key role in biofilm formation and virulence. Veterinary Microbiology, 2011, 152, 151-160.	1.9	97
56	lmmunoproteomic assay of secreted proteins of Streptococcus suis serotype 9 with convalescent sera from pigs. Folia Microbiologica, 2011, 56, 423-430.	2.3	8
57	Immunoproteomic analysis of bacterial proteins of Actinobacillus pleuropneumoniae serotype 1. Proteome Science, 2011, 9, 32.	1.7	14