
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6351172/publications.pdf Version: 2024-02-01

STEPHANE HUNOT

#	Article	IF	CITATIONS
1	Neuroinflammation in Alzheimer's disease. Lancet Neurology, The, 2015, 14, 388-405.	4.9	4,129
2	Neuroinflammation in Parkinson's disease: a target for neuroprotection?. Lancet Neurology, The, 2009, 8, 382-397.	4.9	1,648
3	Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. Journal of Clinical Investigation, 2009, 119, 182-92.	3.9	875
4	Nuclear translocation of NF-ÂB is increased in dopaminergic neurons of patients with Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7531-7536.	3.3	657
5	Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2875-2880.	3.3	644
6	Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5473-5478.	3.3	611
7	Nitric oxide synthase and neuronal vulnerability in parkinson's disease. Neuroscience, 1996, 72, 355-363.	1.1	556
8	Neuroinflammation in Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, S210-S212.	1.1	516
9	Understanding Dopaminergic Cell Death Pathways in Parkinson Disease. Neuron, 2016, 90, 675-691.	3.8	460
10	FcεRII/CD23 Is Expressed in Parkinson's Disease and Induces, <i>In Vitro,</i> Production of Nitric Oxide and Tumor Necrosis Factor-α in Glial Cells. Journal of Neuroscience, 1999, 19, 3440-3447.	1.7	399
11	JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 665-670.	3.3	396
12	The Role of Glial Reaction and Inflammation in Parkinson's Disease. Annals of the New York Academy of Sciences, 2003, 991, 214-228.	1.8	394
13	Targeting α-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurology, The, 2015, 14, 855-866.	4.9	393
14	Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. Journal of Clinical Investigation, 2010, 120, 2745-2754.	3.9	359
15	Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18578-18583.	3.3	354
16	Neuroinflammatory processes in Parkinson's disease. Annals of Neurology, 2003, 53, S49-S60.	2.8	353
17	Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nature Medicine, 2000, 6, 1241-1247.	15.2	303
18	Glial cells and inflammation in parkinson's disease: A role in neurodegeneration?. Annals of Neurology, 1998, 44, S115-20.	2.8	289

#	Article	IF	CITATIONS
19	Caspase knockouts: matters of life and death. Cell Death and Differentiation, 1999, 6, 1043-1053.	5.0	269
20	The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3585-3590.	3.3	245
21	Caspase-8 Is an Effector in Apoptotic Death of Dopaminergic Neurons in Parkinson's Disease, But Pathway Inhibition Results in Neuronal Necrosis. Journal of Neuroscience, 2001, 21, 2247-2255.	1.7	242
22	Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6632-6637.	3.3	184
23	Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain, 2017, 140, 184-200.	3.7	184
24	Neuroinflammatory processes in Parkinson's disease. Parkinsonism and Related Disorders, 2005, 11, S9-S15.	1.1	181
25	An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer's disease. Neuroscience, 1999, 88, 1015-1032.	1.1	166
26	Nuclear translocation of NF-l [°] B in cholinergic neurons of patients with Alzheimer's disease. NeuroReport, 1997, 8, 2849-2852.	0.6	147
27	Dopaminergic neurons degenerate by apoptosis in Parkinson's disease. Movement Disorders, 1999, 14, 383-384.	2.2	147
28	Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Scientific Reports, 2013, 3, 1393.	1.6	134
29	Neurochemokines: a menage a trois providing new insights on the functions of chemokines in the central nervous system. Journal of Neurochemistry, 2011, 118, 680-694.	2.1	115
30	Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson's disease. Journal of Neurochemistry, 2002, 83, 320-330.	2.1	111
31	Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: A post mortem in situ hybridization study with special reference to Parkinson's disease. Journal of Neural Transmission, 1996, 103, 1043-1052.	1.4	84
32	Role of TNF-α Receptors in Mice Intoxicated with the Parkinsonian Toxin MPTP. Experimental Neurology, 2002, 177, 183-192.	2.0	81
33	Modelling Parkinsonâ€like neurodegeneration via osmotic minipump delivery of MPTP and probenecid. Journal of Neurochemistry, 2008, 107, 701-711.	2.1	67
34	Effects of oral administration of rotenone on gastrointestinal functions in mice. Neurogastroenterology and Motility, 2013, 25, e183-93.	1.6	66
35	APOPTOSIS: Death of a Monopoly?. Science, 2001, 292, 865-866.	6.0	62
36	Inflammation and dopaminergic neuronal loss in Parkinson's disease: a complex matter. Experimental Neurology, 2003, 184, 561-564.	2.0	57

#	Article	IF	CITATIONS
37	Nitric oxide, glial cells and neuronal degeneration in parkinsonism. Trends in Pharmacological Sciences, 2000, 21, 163-165.	4.0	54
38	Glucocorticoid receptor in astrocytes regulates midbrain dopamine neurodegeneration through connexin hemichannel activity. Cell Death and Differentiation, 2019, 26, 580-596.	5.0	53
39	Analysis of monocyte infiltration in MPTP mice reveals that microglial CX3CR1 protects against neurotoxic over-induction of monocyte-attracting CCL2 by astrocytes. Journal of Neuroinflammation, 2017, 14, 60.	3.1	50
40	A viral peptide that targets mitochondria protects against neuronal degeneration in models of Parkinson's disease. Nature Communications, 2014, 5, 5181.	5.8	44
41	Adaptive preconditioning in neurological diseases – therapeutic insights from proteostatic perturbations. Brain Research, 2016, 1648, 603-616.	1.1	41
42	The inflammatory response in the Parkinson brain. Clinical Neuroscience Research, 2001, 1, 434-443.	0.8	37
43	Trk Neurotrophin Receptors in Cholinergic Neurons of Patients with Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 1997, 8, 1-8.	0.7	36
44	Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease. Journal of Neuroinflammation, 2014, 11, 86.	3.1	33
45	Clial cell participation in the degeneration of dopaminergic neurons in Parkinson's disease. Advances in Neurology, 1999, 80, 9-18.	0.8	30
46	Pleiotrophin receptor RPTPâ€Î¶/β expression is upâ€regulated by <scp>l</scp> â€DOPA in striatal medium spiny neurons of parkinsonian rats. Journal of Neurochemistry, 2008, 107, 443-452.	2.1	22
47	Neutral Sphingomyelinase Behaviour in Hippocampus Neuroinflammation of MPTP-Induced Mouse Model of Parkinson's Disease and in Embryonic Hippocampal Cells. Mediators of Inflammation, 2017, 2017, 1-8.	1.4	19
48	Legionella pneumophila Strain 130b Evades Macrophage Cell Death Independent of the Effector SidF in the Absence of Flagellin. Frontiers in Cellular and Infection Microbiology, 2017, 7, 35.	1.8	18
49	Effect of Vitamin D in HN9.10e Embryonic Hippocampal Cells and in Hippocampus from MPTP-Induced Parkinson's Disease Mouse Model. Frontiers in Cellular Neuroscience, 2018, 12, 31.	1.8	16
50	Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Induces Astrocyte Proliferation through the Activation of Transforming-Growth Factor-α/Epidermal Growth Factor Receptor Signaling Pathway. Molecular Pharmacology, 2012, 82, 948-957.	1.0	15
51	e-Cadherin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson Disease. Mediators of Inflammation, 2016, 2016, 1-7.	1.4	12
52	DAP12 and CD11b contribute to the microglial-induced death of dopaminergic neurons in vitro but not in vivo in the MPTP mouse model of Parkinson's disease. Journal of Neuroinflammation, 2013, 10, 82.	3.1	11
53	Inflammation and Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-2.	0.6	9
54	MFGE8 does not orchestrate clearance of apoptotic neurons in a mouse model of Parkinson's disease. Neurobiology of Disease, 2013, 51, 192-201.	2.1	9

#	Article	IF	CITATIONS
55	Modelling α-Synuclein Aggregation and Neurodegeneration with Fibril Seeds in Primary Cultures of Mouse Dopaminergic Neurons. Cells, 2022, 11, 1640.	1.8	8
56	CD95 (APO-1/Fas) and Parkinson's disease. Annals of Neurology, 1998, 44, 425-425.	2.8	6
57	Editorial. Journal of Neural Transmission, 2010, 117, 897-898.	1.4	3
58	Editorial: Brain-Targeted Autoimmunity: Beyond Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 677577.	2.2	3