Ilaria Armentano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6351132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer Materials for Respiratory Protection: Processing, End Use, and Testing Methods. ACS Applied Polymer Materials, 2021, 3, 531-548.	2.0	44
2	Dielectric Spectroscopy of PP/MWCNT Nanocomposites: Relationship with Crystalline Structure and Injection Molding Condition. Nanomaterials, 2021, 11, 550.	1.9	17
3	Effect of Filler Morphology on the Electrical and Thermal Conductivity of PP/Carbon-Based Nanocomposites. Journal of Composites Science, 2021, 5, 196.	1.4	5
4	Synergic Effect of Nanolignin and Metal Oxide Nanoparticles into Poly(<scp> </scp> -lactide) Bionanocomposites: Material Properties, Antioxidant Activity, and Antibacterial Performance. ACS Applied Bio Materials, 2020, 3, 5263-5274.	2.3	52
5	Effect of Injection Molding Conditions on Crystalline Structure and Electrical Resistivity of PP/MWCNT Nanocomposites. Polymers, 2020, 12, 1685.	2.0	14
6	Unpatterned Bioactive Poly(Butylene 1,4-Cyclohexanedicarboxylate)-Based Film Fast Induced Neuronal-Like Differentiation of Human Bone Marrow-Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2020, 21, 9274.	1.8	9
7	Effect of SWCNT Content and Water Vapor Adsorption on the Electrical Properties of Cellulose Nanocrystal-Based Nanohybrids. Journal of Physical Chemistry C, 2020, 124, 14901-14910.	1.5	6
8	Improving the flexibility and compostability of starch/poly(butylene cyclohexanedicarboxylate)-based blends. Carbohydrate Polymers, 2020, 246, 116631.	5.1	6
9	Cellulose nanocrystal based multifunctional nanohybrids. Progress in Materials Science, 2020, 112, 100668.	16.0	113
10	Recycled leather cutting waste-based boards: thermal, acoustic, hygrothermal and ignitability properties. Journal of Material Cycles and Waste Management, 2020, 22, 1339-1351.	1.6	11
11	Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydrate Polymers, 2019, 223, 115131.	5.1	35
12	Multifunctional ternary composite films based on PLA and Ag/alginate microbeads: Physical characterization and silver release kinetics. Materials Science and Engineering C, 2019, 98, 1159-1168.	3.8	20
13	Metal Nanoparticles Embedded in Cellulose Nanocrystal Based Films: Material Properties and Post-use Analysis. Biomacromolecules, 2018, 19, 2618-2628.	2.6	62
14	Adipose Stem Cell Translational Applications: From Bench-to-Bedside. International Journal of Molecular Sciences, 2018, 19, 3475.	1.8	60
15	Processing, thermo-mechanical characterization and gas permeability of thermoplastic starch/poly(butylene trans-1,4-cyclohexanedicarboxylate) blends. Polymer Degradation and Stability, 2018, 157, 100-107.	2.7	12
16	Recent Advances in Nanocomposites Based on Aliphatic Polyesters: Design, Synthesis, and Applications in Regenerative Medicine. Applied Sciences (Switzerland), 2018, 8, 1452.	1.3	21
17	Nanocomposites Based on Biodegradable Polymers. Materials, 2018, 11, 795.	1.3	83
18	Surface Hydrophilicity of Poly(l-Lactide) Acid Polymer Film Changes the Human Adult Adipose Stem Cell Architecture. Polymers, 2018, 10, 140.	2.0	26

Ilaria Armentano

#	Article	IF	CITATIONS
19	Nanostructured Biopolymer-based Materials for Regenerative Medicine Applications. Current Organic Chemistry, 2018, 22, 1193-1204.	0.9	9
20	Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging. Food and Bioprocess Technology, 2017, 10, 770-780.	2.6	72
21	Processing and characterization of nanocomposite based on poly(butylene/triethylene succinate) copolymers and cellulose nanocrystals. Carbohydrate Polymers, 2017, 165, 51-60.	5.1	30
22	Recent Advances in Conductive Composites Based on Biodegradable Polymers for Regenerative Medicine Applications. , 2017, , 519-542.		0
23	Design of a nanocomposite substrate inducing adult stem cell assembly and progression toward an Epiblast-like or Primitive Endoderm-like phenotype via mechanotransduction. Biomaterials, 2017, 144, 211-229.	5.7	23
24	Multifunctional antimicrobial nanocomposites for food packaging applications. , 2017, , 265-303.		9
25	Multifunctional nanostructured biopolymeric materials for therapeutic applications. , 2017, , 107-135.		1
26	Skin Tissue Engineering. , 2017, , 1408-1423.		0
27	Antimicrobial Properties and Cytocompatibility of PLGA/Ag Nanocomposites. Materials, 2016, 9, 37.	1.3	25
28	Cellulose nano-biocomposites from high oleic sunflower oil-derived thermosets. European Polymer Journal, 2016, 79, 109-120.	2.6	11
29	Effect of SWCNT introduction in random copolymers on material properties and fibroblast long term culture stability. Polymer Degradation and Stability, 2016, 132, 220-230.	2.7	8
30	Relationship between morphology and electrical properties in PP/MWCNT composites: Processing-induced anisotropic percolation threshold. Materials Chemistry and Physics, 2016, 180, 284-290.	2.0	27
31	In-vitro degradation of PLGA nanoparticles in aqueous medium and in stem cell cultures by monitoring the cargo fluorescence spectrum. Polymer Degradation and Stability, 2016, 134, 296-304.	2.7	25
32	PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydrate Polymers, 2016, 142, 105-113.	5.1	167
33	Effect of processing techniques on the 3 <scp>D</scp> microstructure of poly (<scp>l</scp> â€lactic) Tj ETQq1 1 Science, 2015, 132, .	0.784314 1.3	1 rgBT /Over 14
34	Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles. Journal of Colloid and Interface Science, 2015, 445, 31-39.	5.0	75
35	Keratins extracted from Merino wool and Brown Alpaca fibres: Thermal, mechanical and biological properties of PLLA based biocomposites. Materials Science and Engineering C, 2015, 47, 394-406.	3.8	42
36	Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT - Food Science and Technology, 2015, 64, 980-988.	2.5	87

ILARIA ARMENTANO

#	Article	IF	CITATIONS
37	Design, development and characterization of a nanomagnetic system based on iron oxide nanoparticles encapsulated in PLLA-nanospheres. European Polymer Journal, 2015, 62, 145-154.	2.6	12
38	The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review. Scientific World Journal, The, 2014, 2014, 1-18.	0.8	141
39	PVA bio-nanocomposites: A new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydrate Polymers, 2014, 99, 47-58.	5.1	126
40	Nanostructured polystyrene films engineered by plasma processes: Surface characterization and stem cell interaction. Journal of Applied Polymer Science, 2014, 131, .	1.3	11
41	Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Carbohydrate Polymers, 2014, 101, 1122-1133.	5.1	161
42	Spin coated cellulose nanocrystal/silver nanoparticle films. Carbohydrate Polymers, 2014, 113, 394-402.	5.1	23
43	Toward the microstructure–properties relationship in MWCNT/epoxy composites: Percolation behavior and dielectric spectroscopy. Composites Science and Technology, 2014, 96, 38-46.	3.8	38
44	Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites. Applied Clay Science, 2014, 93-94, 78-84.	2.6	24
45	Inclusion of PLLA nanoparticles in thermosensitive semi-interpenetrating polymer networks. Polymer Degradation and Stability, 2014, 108, 280-287.	2.7	7
46	Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers. Carbon, 2013, 63, 274-282.	5.4	50
47	Protein Encapsulation in Biodegradable Polymeric Nanoparticles: Morphology, Fluorescence Behaviour and Stem Cell Uptake. Macromolecular Bioscience, 2013, 13, 1204-1212.	2.1	27
48	Combined Effects of Ag Nanoparticles and Oxygen Plasma Treatment on PLGA Morphological, Chemical, and Antibacterial Properties. Biomacromolecules, 2013, 14, 626-636.	2.6	52
49	Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. Journal of Food Engineering, 2013, 118, 117-124.	2.7	192
50	Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 2013, 38, 1720-1747.	11.8	527
51	Biodegradable Composite Scaffolds: A Strategy to Modulate Stem Cell Behaviour. Recent Patents on Drug Delivery and Formulation, 2013, 7, 9-17.	2.1	14
52	Integrated PLGA–Ag nanocomposite systems to control the degradation rate and antibacterial properties. Journal of Applied Polymer Science, 2013, 130, 1185-1193.	1.3	33
53	Nanocomposites Based on PLLA and Multi Walled Carbon Nanotubes Support the Myogenic Differentiation of Murine Myoblast Cell Line. ISRN Tissue Engineering, 2013, 2013, 1-8.	0.5	6
54	Enhancing Osteoconduction of PLLA-Based Nanocomposite Scaffolds for Bone Regeneration Using Different Biomimetic Signals to MSCs. International Journal of Molecular Sciences, 2012, 13, 2439-2458.	1.8	37

ARTICLE IF CITATIONS Morphological and thermal behavior of porous biopolymeric nanoparticles. European Polymer Journal, 2012, 48, 1152-1159. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA 5.1420 56 nano-biocomposites. Carbohydrate Polymers, 2012, 90, 948-956. Tuning Multi/Pluri-Potent Stem Cell Fate by Electrospun Poly(<scp>l</scp>-lactic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 662 Biodegradable Composite Scaffolds: A Strategy to Modulate Stem Cell Behaviour. Recent Patents on 58 2.1 0 Drug Delivery and Formulation, 2012, 7, 9-17. Biocompatible Poly(<scp>L</scp>″actide)/MWCNT Nanocomposites: Morphological Characterization, 2.1 48 Electrical Properties, and Stem Cell Interaction. Macromolecular Bioscience, 2012, 12, 870-881. Plasma surface modification of porous PLLA films: Analysis of surface properties and <i>in vitro</i> 60 1.3 30 hydrolytic degradation. Journal of Applied Polymer Science, 2012, 125, E239. Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver 5.1 538 nanoparticles. Carbohydrate Polymers, 2012, 87, 1596-1605. Stem cell-biomaterial interactions for regenerative medicine. Biotechnology Advances, 2012, 30, 62 6.0 179 338-351. New multifunctional poly(lactide acid) composites: Mechanical, antibacterial, and degradation 1.3 properties. Journal of Applied Polymer Science, 2012, 124, 87-98. Novel Poly(L-lactide) PLLA/SWNTs Nanocomposites for Biomedical Applications: Material 64 Characterization and Biocompatibility Evaluation. Journal of Biomaterials Science, Polymer Edition, 1.9 30 2011, 22, 541-556. Dielectric properties at microwave frequencies of poly(É-caprolactone)/CNF films and electrospun 2.1 mats. Synthetic Metals, 2011, 161, 911-918. PLGA/Ag nanocomposites: in vitro degradation study and silver ion release. Journal of Materials 1.7 66 50 Science: Materials in Medicine, 2011, 22, 2735-2744. Production and properties of solventâ€cast poly(εâ€caprolactone) composites with carbon 1.3 nanostructures. Journal of Applied Polymer Science, 2011, 119, 3544-3552. Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites. 68 5.4 76 Carbon, 2011, 49, 2370-2379. Mechanotransduction: Tuning Stem Cells Fate. Journal of Functional Biomaterials, 2011, 2, 67-87. 69 1.8 46 Microstructure and Cytocompatibility of Electrospun Nanocomposites Based on Poly(É)-Caprolactone) 70 0.7 26 and Carbon Nanostructures. International Journal of Artificial Organs, 2010, 33, 271-282. Microstructure and cytocompatibility of electrospun nanocomposites based on poly(epsilon-caprolactone) and carbon nanostructures. International Journal of Artificial Organs, 71 0.7 2010, 33, 271-82. Hydrogenated Amorphous Carbon Nanopatterned Film Designs Drive Human Bone Marrow 57 1.6

ILARIA ARMENTANO

72 Mesenchymal Stem Cell Cytoskeleton Architecture. Tissue Engineering - Part A, 2009, 15, 3139-3149.

ILARIA ARMENTANO

#	Article	IF	CITATIONS
73	Role of PLLA plasma surface modification in the interaction with human marrow stromal cells. Journal of Applied Polymer Science, 2009, 114, 3602-3611.	1.3	37
74	Processing and properties of poly(Îμ-caprolactone)/carbon nanofibre composite mats and films obtained by electrospinning and solvent casting. Journal of Materials Science, 2009, 44, 4789-4795.	1.7	30
75	Electrospun poly(ε-caprolactone)/Ca-deficient hydroxyapatite nanohybrids: Microstructure, mechanical properties and cell response by murine embryonic stem cells. Materials Science and Engineering C, 2009, 29, 2063-2071.	3.8	71
76	Effects of carbon nanotubes (CNTs) on the processing and in-vitro degradation of poly(dl-lactide-co-glycolide)/CNT films. Journal of Materials Science: Materials in Medicine, 2008, 19, 2377-2387.	1.7	73
77	Analysis of the biomineralization process on SWNT-COOH and F-SWNT films. Materials Science and Engineering C, 2008, 28, 1522-1529.	3.8	28
78	Synthesis and photoelectrical properties of carbon nanotube–dendritic porphyrin light harvesting molecule systems. Diamond and Related Materials, 2007, 16, 658-663.	1.8	28
79	Selective interaction of single-walled carbon nanotubes with conducting dendrimer. Diamond and Related Materials, 2006, 15, 95-99.	1.8	16
80	Modification of fluorinated single-walled carbon nanotubes with aminosilane molecules. Carbon, 2006, 44, 2196-2201.	5.4	61
81	Enhancement of photoelectrical properties in polymer nanocomposites containing modified single-walled carbon nanotubes by conducting dendrimer. Journal of Applied Physics, 2006, 99, 114305.	1.1	14
82	Interaction of oxygen with nanocomposites made of n-type conducting polymers and carbon nanotubes: role of charge transfer complex formation between nanotubes and poly(3-octylthiophene). Thin Solid Films, 2005, 476, 162-167.	0.8	9
83	Sidewall functionalization of single-walled carbon nanotubes through CF4 plasma treatment and subsequent reaction with aliphatic amines. Chemical Physics Letters, 2005, 403, 385-389.	1.2	92
84	Electrically switchable carbon nanotubes hydrophobic surfaces. Diamond and Related Materials, 2005, 14, 121-124.	1.8	14
85	Chemical gating and photoconductivity of CF4 plasma-functionalized single-walled carbon nanotubes with adsorbed butylamine. Journal of Applied Physics, 2005, 97, 114320.	1.1	17
86	Vacancy-Induced Chemisorption of NO2on Carbon Nanotubes:Â A Combined Theoretical and Experimental Study. Journal of Physical Chemistry B, 2005, 109, 13175-13179.	1.2	44
87	Interaction of methane with carbon nanotube thin films: role of defects and oxygen adsorption. Materials Science and Engineering C, 2004, 24, 527-533.	3.8	45
88	Carbon nanotubes as new materials for gas sensing applications. Journal of the European Ceramic Society, 2004, 24, 1405-1408.	2.8	125
89	Dielectric behavior of epoxy matrix/single-walled carbon nanotube composites. Composites Science and Technology, 2004, 64, 23-33.	3.8	81
90	A deeper understanding of the photodesorption mechanism of aligned carbon nanotube thin films by impedance spectroscopy. Thin Solid Films, 2004, 449, 105-112.	0.8	17

ILARIA ARMENTANO

#	Article	IF	CITATIONS
91	Effects of oxygen annealing on cross sensitivity of carbon nanotubes thin films for gas sensing applications. Sensors and Actuators B: Chemical, 2004, 100, 33-40.	4.0	38
92	Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine) nanocomposite material. Chemical Physics Letters, 2004, 383, 617-622.	1.2	132
93	Role of defects on the gas sensing properties of carbon nanotubes thin films: experiment and theory. Chemical Physics Letters, 2004, 387, 356-361.	1.2	121
94	Synthesis and electrical properties of CdS Langmuir–Blodgett multilayers nanoparticles on self-assembled carbon nanotubes. Chemical Physics Letters, 2004, 392, 214-219.	1.2	8
95	Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy. Carbon, 2004, 42, 323-329.	5.4	72
96	AC conductivity of conjugated polymer onto self-assembled aligned carbon nanotubes. Diamond and Related Materials, 2004, 13, 250-255.	1.8	13
97	Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diamond and Related Materials, 2004, 13, 1301-1305.	1.8	146
98	Controllable fabrication of aligned carbon nanotubes by pulsed plasma: selective positioning and electrical transport phenomena. Materials Letters, 2004, 58, 470-473.	1.3	10
99	NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition. Sensors and Actuators B: Chemical, 2003, 93, 333-337.	4.0	164
100	Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD. Sensors and Actuators B: Chemical, 2003, 95, 195-202.	4.0	130
101	Reversible oxidation effects on carbon nanotubes thin films for gas sensing applications. Materials Science and Engineering C, 2003, 23, 523-529.	3.8	83
102	Effects of oxygen annealing on gas sensing properties of carbon nanotube thin films. Thin Solid Films, 2003, 436, 95-100.	0.8	72
103	Effects of single-walled carbon nanotube incorporation on the cure reaction of epoxy resin and its detection by Raman spectroscopy. Diamond and Related Materials, 2003, 12, 827-832.	1.8	118
104	Effect of catalyst layer thickness and Ar dilution on the plasma deposition of multi-walled carbon nanotubes. Diamond and Related Materials, 2003, 12, 821-826.	1.8	12
105	Frequency dependent electrical transport between conjugated polymer and single-walled carbon nanotubes. Diamond and Related Materials, 2003, 12, 1601-1609.	1.8	34
106	Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Applied Physics Letters, 2003, 82, 961-963.	1.5	480
107	Electrical transport properties of conjugated polymer onto self-assembled aligned carbon nanotubes. Diamond and Related Materials, 2003, 12, 1524-1531.	1.8	11
108	Effects of fluorine incorporation on the properties of amorphous carbon/p-type crystalline silicon heterojunction diodes. Journal of Non-Crystalline Solids, 2003, 321, 175-182.	1.5	19

#	Article	IF	CITATIONS
109	Pulsed plasma-induced alignment of carbon nanotubes. Materials Letters, 2003, 57, 3699-3704.	1.3	14