Claudia Ringler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6350950/publications.pdf

Version: 2024-02-01

57631 62479 9,576 94 44 80 citations h-index g-index papers 103 103 103 8401 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hierarchical Modelling of Small-Scale Irrigation: Constraints and Opportunities for Adoption in Sub-Saharan Africa. Water Economics and Policy, 2022, 08, .	0.3	4
2	The role of water in transforming food systems. Global Food Security, 2022, 33, 100639.	4.0	4
3	Irrigation improves weightâ€forâ€height <i>z</i> â€scores of children under five, and Women's and Household Dietary Diversity Scores in Ethiopia and Tanzania. Maternal and Child Nutrition, 2022, 18, .	1.4	4
4	Perspective: The Importance of Water Security for Ensuring Food Security, Good Nutrition, and Well-being. Advances in Nutrition, 2021, 12, 1058-1073.	2.9	72
5	Solar or Diesel: A Comparison of Costs for Groundwaterâ€Fed Irrigation in Subâ€Saharan Africa Under Two Energy Solutions. Earth's Future, 2021, 9, e2020EF001611.	2.4	21
6	From Torrents to Trickles: Irrigation's Future in Africa and Asia. Annual Review of Resource Economics, 2021, 13, 157-176.	1.5	4
7	Integrating groundwater irrigation into hydrological simulation of India: Case of improving model representation of anthropogenic water use impact using GRACE. Journal of Hydrology: Regional Studies, 2020, 29, 100681.	1.0	15
8	Agricultural Development and Land Use Change in India: A Scenario Analysis of Tradeâ€Offs Between UN Sustainable Development Goals (SDGs). Earth's Future, 2020, 8, e2019EF001287.	2.4	66
9	Realizing resilience for decision-making. Nature Sustainability, 2019, 2, 907-913.	11.5	108
10	Rethinking irrigation modernisation: realising multiple objectives through the integration of fisheries. Marine and Freshwater Research, 2019, 70, 1201.	0.7	25
11	Aligning evidence generation and use across health, development, and environment. Current Opinion in Environmental Sustainability, 2019, 39, 81-93.	3.1	16
12	Viewing Agricultural Water Management Through a Systems Analysis Lens. Water Resources Research, 2019, 55, 1778-1791.	1.7	23
13	Decisionâ€Making for Systemic Water Risks: Insights From a Participatory Risk Assessment Process in Vietnam. Earth's Future, 2018, 6, 543-564.	2.4	25
14	A Water Rights Trading Approach to Increasing Inflows to the Aral Sea. Land Degradation and Development, 2018, 29, 952-961.	1.8	18
15	Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development. Renewable Energy, 2018, 116, 827-834.	4.3	108
16	Can Sub-Saharan Africa feed itself? The role of irrigation development in the region's drylands for food security. Water International, 2018, 43, 796-814.	0.4	29
17	Evaluating the pathways from small-scale irrigation to dietary diversity: evidence from Ethiopia and Tanzania. Food Security, 2018, 10, 981-997.	2.4	71
18	Quantifying the Sustainability of Water Availability for the Waterâ€Foodâ€Energyâ€Ecosystem Nexus in the Niger River Basin. Earth's Future, 2018, 6, 1292-1310.	2.4	40

#	Article	IF	CITATIONS
19	The paradox of irrigation efficiency. Science, 2018, 361, 748-750.	6.0	516
20	Hydropower versus irrigationâ€"an analysis of global patterns. Environmental Research Letters, 2017, 12, 034006.	2.2	86
21	Addressing gender in agricultural research for development in the face of a changing climate: where are we and where should we be going?. International Journal of Agricultural Sustainability, 2017, 15, 482-500.	1.3	115
22	Model Use in WEF Nexus Analysis: a Review of Issues. Current Sustainable/Renewable Energy Reports, 2017, 4, 144-152.	1.2	29
23	Reconstructing annual groundwater storage changes in a large-scale irrigation region using GRACE data and Budyko model. Journal of Hydrology, 2017, 551, 397-406.	2.3	40
24	A coupled modeling framework for sustainable watershed management in transboundary river basins. Hydrology and Earth System Sciences, 2017, 21, 6275-6288.	1.9	67
25	Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 2016, 9, 175-222.	1.3	379
26	Role of water security for agricultural and economic development $\hat{a} \pmb{\in} \text{``concepts}$ and global scenarios. , 2016, , .		1
27	The critical role of risk in setting directions for water, food and energy policy and research. Current Opinion in Environmental Sustainability, 2016, 23, 12-16.	3.1	50
28	Modeling the Agricultural Water–Energy–Food Nexus in the Indus River Basin, Pakistan. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	71
29	Responding to Global Challenges in Food, Energy, Environment and Water: Risks and Options Assessment for Decisionâ€Making. Asia and the Pacific Policy Studies, 2016, 3, 275-299.	0.6	45
30	Global linkages among energy, food and water: an economic assessment. Journal of Environmental Studies and Sciences, 2016, 6, 161-171.	0.9	56
31	Drivers of groundwater use and technical efficiency of groundwater, canal water, and conjunctive use in Pakistan's Indus Basin Irrigation System. International Journal of Water Resources Development, 2016, 32, 459-476.	1.2	25
32	Optimizing irrigation efficiency improvements in the Aral Sea Basin. Water Resources and Economics, 2016, 13, 30-45.	0.9	63
33	Water Resources and Food Security. Agronomy Journal, 2015, 107, 1533-1538.	0.9	22
34	Policy Nook: "Climate Change and Water: What Can Economics Tell Us?". Water Economics and Policy, 2015, 01, 1571002.	0.3	0
35	The Role of Latin America's Land and Water Resources for Global Food Security: Environmental Trade-Offs of Future Food Production Pathways. PLoS ONE, 2015, 10, e0116733.	1.1	41
36	Sustainability in the water–energy–food nexus. Water International, 2015, 40, 723-732.	0.4	116

#	Article	IF	Citations
37	How would the Rogun Dam affect water and energy scarcity in Central Asia?. Water International, 2015, 40, 856-876.	0.4	37
38	Potential gains from water rights trading in the Aral Sea Basin. Agricultural Water Management, 2015, 152, 41-56.	2.4	65
39	Climate and southern Africa's water–energy–food nexus. Nature Climate Change, 2015, 5, 837-846.	8.1	328
40	Estimating the potential for expanding smallholder irrigation in Sub-Saharan Africa. Agricultural Water Management, 2014, 131, 183-193.	2.4	116
41	Climate change and agriculture: Impacts and adaptation options in South Africa. Water Resources and Economics, 2014, 5, 24-48.	0.9	82
42	Climate–water interactions—Challenges for improved representation in integrated assessment models. Energy Economics, 2014, 46, 510-521.	5.6	15
43	International trade buffers the impact of future irrigation shortfalls. Global Environmental Change, 2014, 29, 22-31.	3.6	59
44	Water governance and adaptation to climate change in the Indus River Basin. Journal of Hydrology, 2014, 519, 2527-2537.	2.3	43
45	The nexus across water, energy, land and food (WELF): potential for improved resource use efficiency?. Current Opinion in Environmental Sustainability, 2013, 5, 617-624.	3.1	468
46	Can agriculture support climate change adaptation, greenhouse gas mitigation and rural livelihoods? insights from Kenya. Climatic Change, 2013, 118, 151-165.	1.7	81
47	Adapting agriculture to climate change in Kenya: Household strategies and determinants. Journal of Environmental Management, 2013, 114, 26-35.	3.8	571
48	Economywide impacts of climate change on agriculture in Sub-Saharan Africa. Ecological Economics, 2013, 93, 150-165.	2.9	105
49	Basin perspectives on the Water–Energy–Food Security Nexus. Current Opinion in Environmental Sustainability, 2013, 5, 607-616.	3.1	161
50	Droughts in Pakistan: a spatiotemporal variability analysis using the Standardized Precipitation Index. Water International, 2013, 38, 620-631.	0.4	82
51	Water and food in the bioeconomy: challenges and opportunities for development. Agricultural Economics (United Kingdom), 2013, 44, 139-150.	2.0	57
52	Climate change impacts and adaptation options for water and food in Pakistan: scenario analysis using an integrated global water and food projections model. Water International, 2013, 38, 651-669.	0.4	32
53	How Market-Based Water Allocation Can Improve Water Use Efficiency in the Aral Sea Basin?. SSRN Electronic Journal, 2013, , .	0.4	3
54	Climate change perception and adaptation of agro-pastoral communities in Kenya. Regional Environmental Change, 2012, 12, 791-802.	1.4	199

#	Article	IF	Citations
55	Climate Change Impacts on Water Availability and Use in the Limpopo River Basin. Water (Switzerland), 2012, 4, 63-84.	1.2	41
56	Estimating the Impact of Climate Change on Agriculture in Low-Income Countries: Household Level Evidence from the Nile Basin, Ethiopia. Environmental and Resource Economics, 2012, 52, 457-478.	1.5	127
57	Policies and Instruments Affecting Water Use for Bioenergy Production. , 2011, , .		1
58	Dry Season Water Management in the Lower Yellow River in China. , 2011, , .		1
59	Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia. Agricultural Economics (United Kingdom), 2011, 42, 593-604.	2.0	124
60	What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy, 2011, 36, 770-782.	2.8	234
61	Policies and instruments affecting water use for bioenergy production. Biofuels, Bioproducts and Biorefining, 2011, 5, 431-444.	1.9	18
62	Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia. Journal of Agricultural Science, 2011, 149, 23-31.	0.6	591
63	Climate variability and maize yield in the Limpopo region of South Africa: Results from GME and MELE methods. Climate and Development, 2011, 3, 114-122.	2.2	4
64	Economy-wide Impacts of Climate Change on Agriculture $\hat{a}\in$ Case Study for Adaptation Strategies in Sub-Saharan Africa. , 2011, , .		0
65	Green and blue water accounting in the Ganges and Nile basins: Implications for food and agricultural policy. Journal of Hydrology, 2010, 384, 276-291.	2.3	56
66	Vulnerability of the South African farming sector to climate change and variability: An indicator approach. Natural Resources Forum, 2010, 34, 175-187.	1.8	173
67	Climate Change and Hunger: Africa's Smallholder Farmers Struggle to Adapt Changement climatique et famine : les petits exploitants africains peinent À s'ajuster Klimawandel und Hunger: Kleinbauern in Afrika haben Schwierigkeiten bei der Anpassung. EuroChoices, 2010, 9, 16-21.	0.6	6
68	Global carbon markets: Opportunities for sub-Saharan Africa in agriculture and forestry. Climate and Development, 2010, 2, 309-331.	2.2	16
69	Joint Water Quantity-Quality Management in a Biofuel Production Areaâ€"Integrated Economic-Hydrologic Modeling Analysis. Journal of Water Resources Planning and Management - ASCE, 2010, 136, 502-511.	1.3	23
70	Modelling farmers' adaptation strategies for climate change and variability: The case of the Limpopo Basin, South Africa. Agrekon, 2010, 49, 217-234.	0.5	62
71	Yellow River basin: living with scarcity. Water International, 2010, 35, 681-701.	0.4	68
72	Water and Food Security Under Global Change. Water Resources Development and Management, 2010, , 3-15.	0.3	10

#	Article	IF	Citations
73	Water quality and food safety: a review and discussion of risks. Water Policy, 2009, 11, 680-695.	0.7	13
74	Adaptation to climate change in Ethiopia and South Africa: options and constraints. Environmental Science and Policy, 2009, 12, 413-426.	2.4	848
75	Water supply and food security: Alternative scenarios for the Indian Indoâ€Gangetic River Basin ¹ . International Journal of River Basin Management, 2009, 7, 167-173.	1.5	3
76	Determinants of farmers' choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Global Environmental Change, 2009, 19, 248-255.	3.6	1,240
77	Water for Agriculture: Maintaining Food Security under Growing Scarcity. Annual Review of Environment and Resources, 2009, 34, 205-222.	5.6	422
78	Substitution between water and other agricultural inputs: Implications for water conservation in a River Basin context. Ecological Economics, 2008, 66, 38-50.	2.9	59
79	Water Reallocation: Drivers, Challenges, Threats, and Solutions for the Poor. Journal of Human Development and Capabilities, 2008, 9, 47-64.	0.9	24
80	WATER ALLOCATION POLICY MODELING FOR THE DONG NAI RIVER BASIN: AN INTEGRATED PERSPECTIVE ¹ . Journal of the American Water Resources Association, 2006, 42, 1465-1482.	1.0	28
81	Role of Water Rights and Market Approaches to Water Quality Management. , 2006, , 47-60.		1
82	Globalization $\hat{a} \in \text{``What's in it for the Poor in Terms of Water and Food Security?., 2005, , 1.}$		1
83	Water Policy Analysis for the Mekong River Basin. Water International, 2004, 29, 30-42.	0.4	49
84	Physical and economic efficiency of water use in the river basin: Implications for efficient water management. Water Resources Research, 2003, 39, .	1.7	97
85	Holistic Water Resources-Economic Modeling. , 2001, , 1.		2
86	Integrated economic-hydrologic water modeling at the basin scale: the Maipo river basin. Agricultural Economics (United Kingdom), 2000, 24, 33-46.	2.0	161
87	Impact on food security and rural development of transferring water out of agriculture. Water Policy, 2000, 1, 567-586.	0.7	94
88	World food markets into the 21st century: environmental and resource constraints and policies. Australian Journal of Agricultural and Resource Economics, 1997, 41, 401-428.	1.3	28
89	A semi-qualitative approach to the operationalization of the Food–Environment–Energy–Water (FE2W) Nexus concept for infrastructure planning: a case study of the Niger Basin. Water International, 0, , 1-27.	0.4	2
90	Malaria and Agriculture: A Global Review of the Literature with a Focus on the Application of Integrated Pest and Vector Management in East Africa and Uganda. SSRN Electronic Journal, 0, , .	0.4	4

#	Article	IF	CITATION
91	The Impact of Irrigation on Nutrition, Health, and Gender: A Review Paper With Insights for Africa South of the Sahara. SSRN Electronic Journal, 0, , .	0.4	23
92	The Policy Landscape of Agricultural Water Management in Pakistan. SSRN Electronic Journal, 0, , .	0.4	3
93	Addressing Transboundary Cooperation in the Eastern Nile Through the Water-Energy-Food Nexus: Insights from an E-Survey and Key Informant Interviews. SSRN Electronic Journal, 0, , .	0.4	13
94	Water Allocation Policies for the Dong Nai River Basin in Vietnam: An Integrated Perspective. SSRN Electronic Journal, 0, , .	0.4	16