Daniel Plano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6350947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selenium Compounds, Apoptosis and Other Types of Cell Death: An Overview for Cancer Therapy. International Journal of Molecular Sciences, 2012, 13, 9649-9672.	4.1	215
2	Design, Synthesis, and Biological Evaluation of Novel Selenium (Se-NSAID) Molecules as Anticancer Agents. Journal of Medicinal Chemistry, 2016, 59, 1946-1959.	6.4	122
3	Selenocyanates and diselenides: A new class of potent antileishmanial agents. European Journal of Medicinal Chemistry, 2011, 46, 3315-3323.	5.5	108
4	Importance of Sphingosine Kinase (SphK) as a Target in Developing Cancer Therapeutics and Recent Developments in the Synthesis of Novel SphK Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 5509-5524.	6.4	88
5	Development and Therapeutic Potential of Selenazo Compounds. Journal of Medicinal Chemistry, 2020, 63, 1473-1489.	6.4	86
6	Selenium and Clinical Trials: New Therapeutic Evidence for Multiple Diseases. Current Medicinal Chemistry, 2011, 18, 4635-4650.	2.4	85
7	Synthesis and antiproliferative activity of novel selenoester derivatives. European Journal of Medicinal Chemistry, 2014, 73, 153-166.	5.5	85
8	Antioxidant-Prooxidant Properties of a New Organoselenium Compound Library. Molecules, 2010, 15, 7292-7312.	3.8	83
9	Selenium Compounds and Apoptotic Modulation: A New Perspective in Cancer Therapy. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1020-1031.	2.4	79
10	Sulfur and selenium derivatives of quinazoline and pyrido[2,3-d]pyrimidine: Synthesis and study of their potential cytotoxic activity inAvitro. European Journal of Medicinal Chemistry, 2012, 47, 283-298.	5.5	70
11	Novel Heteroaryl Selenocyanates and Diselenides as Potent Antileishmanial Agents. Antimicrobial Agents and Chemotherapy, 2016, 60, 3802-3812.	3.2	66
12	Synthesis and <i>in vitro</i> Anticancer Activities of some Selenadiazole Derivatives. Archiv Der Pharmazie, 2010, 343, 680-691.	4.1	57
13	Synthesis and antiproliferative activity of novel symmetrical alkylthio- and alkylseleno-imidocarbamates. European Journal of Medicinal Chemistry, 2011, 46, 265-274.	5.5	52
14	Novel potent organoselenium compounds as cytotoxic agents in prostate cancer cells. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6853-6859.	2.2	50
15	Synthesis and Pharmacological Screening of Several Aroyl and Heteroaroyl Selenylacetic Acid Derivatives as Cytotoxic and Antiproliferative Agents. Molecules, 2009, 14, 3313-3338.	3.8	50
16	Antileishmanial activity of imidothiocarbamates and imidoselenocarbamates. Parasitology Research, 2011, 108, 233-239.	1.6	42
17	Innovative Lead Compounds and Formulation Strategies As Newer Kinetoplastid Therapies. Current Medicinal Chemistry, 2012, 19, 4259-4288.	2.4	42
18	Novel seleno- and thio-urea derivatives with potent inÂvitro activities against several cancer cell lines. European Journal of Medicinal Chemistry, 2016, 113, 134-144.	5.5	41

Daniel Plano

#	Article	IF	CITATIONS
19	Chalcogen containing heterocyclic scaffolds: New hybrids with antitumoral activity. European Journal of Medicinal Chemistry, 2016, 123, 407-418.	5.5	40
20	Novel selenadiazole derivatives as selective antitumor and radical scavenging agents. European Journal of Medicinal Chemistry, 2018, 157, 14-27.	5.5	32
21	Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 955.	4.1	32
22	Synthesis and Leishmanicidal Activity of Novel Urea, Thiourea, and Selenourea Derivatives of Diselenides. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	30
23	In vitro radical scavenging and cytotoxic activities of novel hybrid selenocarbamates. Bioorganic and Medicinal Chemistry, 2015, 23, 1716-1727.	3.0	29
24	Leishmanicidal Activities of Novel Methylseleno-Imidocarbamates. Antimicrobial Agents and Chemotherapy, 2015, 59, 5705-5713.	3.2	28
25	Library of Seleno-Compounds as Novel Agents against Leishmania Species. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	27
26	Kinase Regulation by Sulfur and Selenium Containing Compounds. Current Cancer Drug Targets, 2011, 11, 496-523.	1.6	26
27	Novel N,N′-Disubstituted Acylselenoureas as Potential Antioxidant and Cytotoxic Agents. Antioxidants, 2020, 9, 55.	5.1	25
28	NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. Journal of Medicinal Chemistry, 2021, 64, 16380-16421.	6.4	25
29	Leishmanicidal Activity of Isoselenocyanate Derivatives. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	24
30	Combined Acylselenourea–Diselenide Structures: New Potent and Selective Antitumoral Agents as Autophagy Activators. ACS Medicinal Chemistry Letters, 2018, 9, 306-311.	2.8	23
31	Thermal stability and decomposition of sulphur and selenium compounds. Journal of Thermal Analysis and Calorimetry, 2009, 98, 559-566.	3.6	21
32	Bisacylimidoselenocarbamates Cause G2/M Arrest Associated with the Modulation of CDK1 and Chk2 in Human Breast Cancer MCF-7 Cells. Current Medicinal Chemistry, 2013, 20, 1609-1619.	2.4	20
33	A diphenyldiselenide derivative induces autophagy <i>via</i> JNK in HTBâ€54 lung cancer cells. Journal of Cellular and Molecular Medicine, 2018, 22, 289-301.	3.6	19
34	Novel Library of Selenocompounds as Kinase Modulators. Molecules, 2011, 16, 6349-6364.	3.8	17
35	Study of polymorphism of organosulfur and organoselenium compounds. Journal of Thermal Analysis and Calorimetry, 2011, 105, 1007-1013.	3.6	17
36	Synthesis and antiproliferative activity of novel methylselenocarbamates. European Journal of Medicinal Chemistry, 2014, 83, 674-684.	5.5	17

#	Article	IF	CITATIONS
37	Novel Methylselenoesters as Antiproliferative Agents. Molecules, 2017, 22, 1288.	3.8	16
38	A dihydroselenoquinazoline inhibits S6 ribosomal protein signalling, induces apoptosis and inhibits autophagy in MCF-7 cells. European Journal of Pharmaceutical Sciences, 2014, 63, 87-95.	4.0	15
39	Benzo[b]thiophene-6-carboxamide 1,1-dioxides: Inhibitors of human cancer cell growth at nanomolar concentrations. Bioorganic and Medicinal Chemistry, 2010, 18, 5701-5707.	3.0	14
40	Selenium Derivatives as Promising Therapy for Chagas Disease: <i>In Vitro</i> and <i>In Vivo</i> Studies. ACS Infectious Diseases, 2021, 7, 1727-1738.	3.8	13
41	Pre-clinical evidences of the antileishmanial effects of diselenides and selenocyanates. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127371.	2.2	12
42	Identification of a Novel Quinoxaline-Isoselenourea Targeting the STAT3 Pathway as a Potential Melanoma Therapeutic. International Journal of Molecular Sciences, 2019, 20, 521.	4.1	11
43	Novel Seleno-Aspirinyl Compound AS-10 Induces Apoptosis, G1 Arrest of Pancreatic Ductal Adenocarcinoma Cells, Inhibits Their NF-κB Signaling, and Synergizes with Gemcitabine Cytotoxicity. International Journal of Molecular Sciences, 2021, 22, 4966.	4.1	11
44	Cytotoxic and Proapototic Activities of Imidoselenocarbamate Derivatives Are Dependent on the Release of Methylselenol. Chemical Research in Toxicology, 2012, 25, 2479-2489.	3.3	10
45	Novel structural insights for imidoselenocarbamates with antitumoral activity related to their ability to generate methylselenol. Bioorganic and Medicinal Chemistry, 2012, 20, 5110-5116.	3.0	10
46	Organoseleno cytostatic derivatives: Autophagic cell death with AMPK and JNK activation. European Journal of Medicinal Chemistry, 2019, 175, 234-246.	5.5	10
47	Library of Selenocyanate and Diselenide Derivatives as In Vivo Antichagasic Compounds Targeting Trypanosoma cruzi Mitochondrion. Pharmaceuticals, 2021, 14, 419.	3.8	10
48	Activity enhancement of selective antitumoral selenodiazoles formulated with poloxamine micelles. Colloids and Surfaces B: Biointerfaces, 2018, 170, 463-469.	5.0	9
49	Oral Efficacy of a Diselenide Compound Loaded in Nanostructured Lipid Carriers in a Murine Model of Visceral Leishmaniasis. ACS Infectious Diseases, 2021, 7, 3197-3209.	3.8	9
50	Structure- and cell-specific effects of imidoselenocarbamates on selenoprotein expression and activity in liver cells in culture. Metallomics, 2012, 4, 1297.	2.4	8
51	Novel N,N′-Disubstituted Selenoureas as Potential Antioxidant and Cytotoxic Agents. Antioxidants, 2021, 10, 777.	5.1	8
52	Thermal stability of selenium, sulfur and nitrogen analogous phthalazine derivatives. Journal of Thermal Analysis and Calorimetry, 2013, 111, 605-610.	3.6	7
53	Molecular descriptors calculation as a tool in the analysis of the antileishmanial activity achieved by two series of diselenide derivatives. An insight into its potential action mechanism. Journal of Molecular Graphics and Modelling, 2015, 60, 63-78.	2.4	7
54	New Amides Containing Selenium as Potent Leishmanicidal Agents Targeting Trypanothione Reductase. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	7

#	Article	IF	CITATIONS
55	Novel quinazoline and pyrido[2,3-d]pyrimidine derivatives and their hydroselenite salts as antitumoral agents. Arkivoc, 2014, 2014, 187-206.	0.5	6
56	Structural variations on antitumour agents derived from bisacylimidoselenocarbamate. A proposal for structure–activity relationships based on the analysis of conformational behaviour. European Journal of Medicinal Chemistry, 2013, 66, 489-498.	5.5	5
57	Methods of selecting combination therapy for colorectal cancer patients: a patent evaluation of US20160025730A1. Expert Opinion on Therapeutic Patents, 2017, 27, 527-538.	5.0	5
58	New Formulation of a Methylseleno-Aspirin Analog with Anticancer Activity Towards Colon Cancer. International Journal of Molecular Sciences, 2020, 21, 9017.	4.1	5
59	New Amides and Phosphoramidates Containing Selenium: Studies on Their Cytotoxicity and Antioxidant Activities in Breast Cancer. Antioxidants, 2021, 10, 590.	5.1	5
60	New Phosphoramidates Containing Selenium as Leishmanicidal Agents. Antimicrobial Agents and Chemotherapy, 2021, 65, e0059021.	3.2	5
61	Synthesis, characterization, crystal structure and cytotoxicity of 2,4-bis(selenomethyl)quinazoline. Structural Chemistry, 2011, 22, 1233-1240.	2.0	4
62	Strong induction of iodothyronine deiodinases by chemotherapeutic selenocompounds. Metallomics, 2015, 7, 347-354.	2.4	4
63	Topological and quantum molecular descriptors as effective tools for analyzing cytotoxic activity achieved by a series of (diselanediyldibenzene-4,1-diylnide)biscarbamate derivatives. Journal of Molecular Graphics and Modelling, 2017, 73, 62-73.	2.4	3
64	Methylselenol release as a cytotoxic tool: a study of the mechanism of the activity achieved by two series of methylselenocarbamate derivatives. Metallomics, 2018, 10, 1128-1140.	2.4	3
65	Selenium Entities: Promising Scaffolds for the Treatment of Cancer and Leishmania. Current Organic Synthesis, 2018, 14, .	1.3	3
66	Potential biomedical reuse of vegetative residuals from mycorrhized grapevines subjected to warming. Archives of Agronomy and Soil Science, 2019, 65, 1341-1353.	2.6	2
67	New Experimental Conditions for Diels–Alder and Friedel-Crafts Alquilation Reactions with Thiophene: A New Selenocyanate with Potent Activity against Cancer. Molecules, 2022, 27, 982.	3.8	2
68	Thermal Analysis of Sulfur and Selenium Compounds with Multiple Applications, Including Anticancer Drugs. , 0, , .		1
69	Thermal characterization and stability evaluation of leishmanicidal selenocyanate and diselenide derivatives. Journal of Thermal Analysis and Calorimetry, 2022, 147, 3127-3139.	3.6	1
70	New Selenoderivatives as Antitumoral Agents. , 2011, , .		0
71	Cytotoxic Effects of Seleno-Trastuzumab on Transtuzumab Resistant JIMT-1 Breast Cancer Cell Line. Free Radical Biology and Medicine, 2013, 65, S15.	2.9	0
72	Vilsmeier reagent, NaHSe and diclofenac acid chloride: one-pot synthesis of a novel selenoindolinone with potent anticancer activity. RSC Advances, 2020, 10, 38404-38408.	3.6	0

#	Article	IF	CITATIONS
73	Abstract 814: Novel aspirin based selenium compounds as therapy against pancreatic cancer. , 2014, , .		0
74	Abstract 2139: Pre-clinical chemopreventive efficacy of a novel hybridp-XSC-aspirin compound in a NNK-induced A/J mouse lung cancer model. , 2014, , .		0
75	Abstract 4502: Identification of an aspirin-derived small molecule as a potential therapeutic for colorectal cancer. , 2015, , .		0
76	Abstract 3061: AS-10: a new small molecule with promising activity against pancreatic cancer. , 2016, , .		0
77	Abstract 1166: Identification of a novel quinoxaline-isoselenourea targeting STAT3 pathway as a potential melanoma therapeutic. , 2017, , .		0
78	Abstract 2794: A novel bis-aspirinyl selenazolidine compound AS-10 as potential colon cancer therapeutic. , 2018, , .		0
79	Abstract 2801: Novel selenodiazoles as antitumor and radical scavenging agents. , 2018, , .		0
80	Abstract 274: Selective chemopreventive efficacy of 1,4-phenylenebis(methylene)seleno-aspirin (p-XS-Asp) towards lung cancer. , 2018, , .		0
81	Abstract 6356: Discovery of seleno allyl hybrid compounds, the Se incorporated mimics of naturally occurring garlic based allylic compounds, as potential anticancer agents. , 2020, , .		0