
Claudia Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6350927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superhydrophilic poly(l-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment. Applied Surface Science, 2016, 371, 74-82.	6.1	44
2	Magnetron sputtered Ti–Si–C thin films prepared at low temperatures. Surface and Coatings Technology, 2007, 201, 7180-7186.	4.8	43
3	Nanocomposite Ag:TiN thin films for dry biopotential electrodes. Applied Surface Science, 2013, 285, 40-48.	6.1	38
4	TiAgx thin films for lower limb prosthesis pressure sensors: Effect of composition and structural changes on the electrical and thermal response of the films. Applied Surface Science, 2013, 285, 10-18.	6.1	34
5	Gas Sensors Based on Localized Surface Plasmon Resonances: Synthesis of Oxide Films with Embedded Metal Nanoparticles, Theory and Simulation, and Sensitivity Enhancement Strategies. Applied Sciences (Switzerland), 2021, 11, 5388.	2.5	29
6	Thin films composed of Ag nanoclusters dispersed in TiO2: Influence of composition and thermal annealing on the microstructure and physical responses. Applied Surface Science, 2015, 358, 595-604.	6.1	28
7	Ag:TiN oated Polyurethane for Dry Biopotential Electrodes: From Polymer Plasma Interface Activation to the First EEG Measurements. Plasma Processes and Polymers, 2016, 13, 341-354.	3.0	27
8	Antibacterial effect and biocompatibility of a novel nanostructured ZnO-coated gutta-percha cone for improved endodontic treatment. Materials Science and Engineering C, 2018, 92, 840-848.	7.3	26
9	Dry Electrodes for Surface Electromyography Based on Architectured Titanium Thin Films. Materials, 2020, 13, 2135.	2.9	26
10	Electrical characterization of Ag:TiN thin films produced by glancing angle deposition. Materials Letters, 2014, 115, 136-139.	2.6	23
11	Piezoresistive Polymer-Based Materials for Real-Time Assessment of the Stump/Socket Interface Pressure in Lower Limb Amputees. IEEE Sensors Journal, 2017, 17, 2182-2190.	4.7	23
12	Zr-O-N coatings for decorative purposes: Study of the system stability by exploration of the deposition parameter space. Surface and Coatings Technology, 2018, 343, 30-37.	4.8	23
13	Evolution of the mechanical properties of Ti-based intermetallic thin films doped with different metals to be used as biomedical devices. Applied Surface Science, 2020, 505, 144617.	6.1	22
14	Nanostructured functional Ti–Ag electrodes for large deformation sensor applications. Sensors and Actuators A: Physical, 2014, 220, 204-212.	4.1	20
15	Multifunctional Ti–Me (Me=Al, Cu) thin film systems for biomedical sensing devices. Vacuum, 2015, 122, 353-359.	3.5	20
16	Biological behaviour of thin films consisting of Au nanoparticles dispersed in a TiO2 dielectric matrix. Vacuum, 2015, 122, 360-368.	3.5	20
17	Thin films composed of metal nanoparticles (Au, Ag, Cu) dispersed in AIN: The influence of composition and thermal annealing on the structure and plasmonic response. Thin Solid Films, 2019, 676, 12-25.	1.8	20
18	Evolution of the functional properties of titanium–silver thin films for biomedical applications: Influence of in-vacuum annealing. Surface and Coatings Technology, 2015, 261, 262-271.	4.8	19

CLAUDIA LOPES

#	Article	IF	CITATIONS
19	Piezoresistive response of nano-architectured Ti x Cu y thin films for sensor applications. Sensors and Actuators A: Physical, 2016, 247, 105-114.	4.1	17
20	Relationship between nano-architectured Ti1â^'x Cu x thin film and electrical resistivity for resistance temperature detectors. Journal of Materials Science, 2017, 52, 4878-4885.	3.7	16
21	Influence of the composition of titanium oxynitride layers on the fretting behavior of functionalized titanium substrates: PVD films versus surface laser treatments. Surface and Coatings Technology, 2014, 255, 146-152.	4.8	15
22	Protective Ag:TiO2 thin films for pressure sensors in orthopedic prosthesis: the importance of composition, structural and morphological features on the biological response of the coatings. Journal of Materials Science: Materials in Medicine, 2014, 25, 2069-2081.	3.6	14
23	Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering. Applied Surface Science, 2015, 354, 298-305.	6.1	14
24	Functional behaviour of TiO ₂ films doped with noble metals. Surface Engineering, 2016, 32, 554-561.	2.2	14
25	Study of the electrical behavior of nanostructured Ti–Ag thin films, prepared by Glancing Angle Deposition. Materials Letters, 2015, 157, 188-192.	2.6	13
26	Ag fractals formed on top of a porous TiO ₂ thin film. Physica Status Solidi - Rapid Research Letters, 2016, 10, 530-534.	2.4	13
27	Growth and size distribution of Au nanoparticles in annealed Au/TiO2 thin films. Thin Solid Films, 2014, 553, 138-143.	1.8	12
28	Fracture resistance of Ti-Ag thin films deposited on polymeric substrates for biosignal acquisition applications. Surface and Coatings Technology, 2019, 358, 646-653.	4.8	10
29	Surface functionalization of polypropylene (PP) by chitosan immobilization to enhance human fibroblasts viability. Polymer Testing, 2020, 86, 106507.	4.8	10
30	Modulated IR radiometry for determining thermal properties and basic characteristics of titanium thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 041511.	2.1	8
31	The influence of nitrogen and oxygen additions on the thermal characteristics of aluminium-based thin films. Materials Chemistry and Physics, 2015, 163, 569-580.	4.0	7
32	Bioactive and biopassive treatment of poly(ethylene terephthalate) multifilament textile yarns to improve/prevent fibroblast viability. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 2213-2226.	3.4	5
33	Me-Doped Ti–Me Intermetallic Thin Films Used for Dry Biopotential Electrodes: A Comparative Case Study. Sensors, 2021, 21, 8143.	3.8	5
34	Preparation of Plasmonic Au-TiO2 Thin Films on a Transparent Polymer Substrate. Coatings, 2020, 10, 227.	2.6	3
35	Back Cover: Ag fractals formed on top of a porous TiO ₂ thin film (Phys. Status Solidi RRL) Tj ETQc	1 1 0.7843 2.4	14 rgBT /Ove