Daniele Vigolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6350915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of surfactant addition and viscosity of the continuous phase on flow fields and kinetics of drop formation in a flow-focusing microfluidic device. Chemical Engineering Science, 2022, 248, 117183.	3.8	13
2	Combined Effect of Matrix Topography and Stiffness on Neutrophil Shape and Motility. Advanced Biology, 2022, 6, e2101312.	2.5	2
3	Micromechanics of soft materials using microfluidics. MRS Bulletin, 2022, 47, 119-126.	3.5	8
4	Modelling Particle Agglomeration on through Elastic Valves under Flow. ChemEngineering, 2021, 5, 40.	2.4	4
5	Labâ€onâ€a ontact Lens Platforms Fabricated by Multiâ€Axis Femtosecond Laser Ablation. Small, 2021, 17, e2102008.	10.0	21
6	Deformable and Robust Core–Shell Protein Microcapsules Templated by Liquid–Liquid Phase‧eparated Microdroplets. Advanced Materials Interfaces, 2021, 8, 2101071.	3.7	8
7	Optimisation of bacterial release from a stable microfluidic-generated water-in-oil-in-water emulsion. RSC Advances, 2021, 11, 7738-7749.	3.6	8
8	Stretchable Nanostructures as Optomechanical Strain Sensors for Ophthalmic Applications. ACS Applied Polymer Materials, 2021, 3, 5416-5424.	4.4	4
9	Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nature Nanotechnology, 2020, 15, 841-847.	31.5	101
10	The role of valve stiffness in the insurgence of deep vein thrombosis. Communications Materials, 2020, 1, 65.	6.9	16
11	Integration of paper microfluidic sensors into contact lenses for tear fluid analysis. Lab on A Chip, 2020, 20, 3970-3979.	6.0	49
12	Microfluidic Templating: Microfluidic Templating of Spatially Inhomogeneous Protein Microgels (Small 32/2020). Small, 2020, 16, 2070178.	10.0	2
13	Microfluidic Templating of Spatially Inhomogeneous Protein Microgels. Small, 2020, 16, e2000432.	10.0	11
14	Laser-inscribed contact lens sensors for the detection of analytes in the tear fluid. Sensors and Actuators B: Chemical, 2020, 317, 128183.	7.8	66
15	Drop formation in microfluidic cross-junction: jetting to dripping to jetting transition. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	37
16	Microfluidics approach to investigate foam hysteretic behaviour. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	9
17	Facile tuning of the mechanical properties of a biocompatible soft material. Scientific Reports, 2019, 9, 7125.	3.3	4
18	Mass Transfer Accompanying Coalescence of Surfactant-Laden and Surfactant-Free Drop in a Microfluidic Channel. Langmuir, 2019, 35, 9184-9193.	3.5	16

DANIELE VIGOLO

#	Article	IF	CITATIONS
19	Contact Lens Technology: From Fundamentals to Applications. Advanced Healthcare Materials, 2019, 8, e1900368.	7.6	148
20	Contact lenses for continuous corneal temperature monitoring. RSC Advances, 2019, 9, 11433-11442.	3.6	44
21	Study of drop coalescence and mixing in microchannel using Ghost Particle Velocimetry. Chemical Engineering Research and Design, 2018, 132, 881-889.	5.6	15
22	Using Discrete Multi-Physics for studying the dynamics of emboli in flexible venous valves. Computers and Fluids, 2018, 166, 57-63.	2.5	34
23	Ghost Particle Velocimetry as an alternative to μPIV for micro/milli-fluidic devices. Chemical Engineering Research and Design, 2018, 133, 183-194.	5.6	18
24	Continuous Isotropic-Nematic Transition in Amyloid Fibril Suspensions Driven by Thermophoresis. Scientific Reports, 2017, 7, 1211.	3.3	22
25	Modelling and simulation of flow and agglomeration in deep veins valves using discrete multi physics. Computers in Biology and Medicine, 2017, 89, 96-103.	7.0	32
26	Realâ€Time PEGDAâ€Based Microgel Generation and Encapsulation in Microdroplets. Advanced Materials Technologies, 2016, 1, 1600028.	5.8	8
27	Controllable generation and encapsulation of alginate fibers using droplet-based microfluidics. Lab on A Chip, 2016, 16, 59-64.	6.0	23
28	Investigating the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy. Lab on A Chip, 2015, 15, 2140-2144.	6.0	23
29	Flow dependent performance of microfluidic microbial fuel cells. Physical Chemistry Chemical Physics, 2014, 16, 12535.	2.8	27
30	Unexpected trapping of particles at a T junction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4770-4775.	7.1	74
31	Nanoemulsions obtained via bubble-bursting at a compound interface. Nature Physics, 2014, 10, 606-612.	16.7	85
32	An experimental and theoretical investigation of particle–wall impacts in a T-junction. Journal of Fluid Mechanics, 2013, 727, 236-255.	3.4	20
33	Giant thermophoresis of poly(N-isopropylacrylamide) microgel particles. Soft Matter, 2012, 8, 5857.	2.7	36
34	Thermophoresis and Thermoelectricity in Surfactant Solutions. Langmuir, 2010, 26, 7792-7801.	3.5	141
35	Thermophoresis: microfluidics characterization and separation. Soft Matter, 2010, 6, 3489.	2.7	118
36	A portable device for temperature control along microchannels. Lab on A Chip, 2010, 10, 795.	6.0	37

DANIELE VIGOLO

#	Article	IF	CITATIONS
37	Does Thermophoretic Mobility Depend on Particle Size?. Physical Review Letters, 2008, 100, 108303.	7.8	219
38	Kinetics of sedimentation in colloidal suspensions. Journal of Physics Condensed Matter, 2008, 20, 494219.	1.8	39
39	Thermophoresis of microemulsion droplets: Size dependence of the Soret effect. Physical Review E, 2007, 75, 040401.	2.1	59