Sheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6350873/publications.pdf Version: 2024-02-01

SHENC ZHANC

#	Article	IF	CITATIONS
1	Thermal sensation and percentage of dissatisfied in thermal environments with positive and negative vertical air temperature differences. Energy and Built Environment, 2023, 4, 629-638.	2.9	6
2	Energy performance index of air distribution: Thermal utilization effectiveness. Applied Energy, 2022, 307, 118122.	5.1	31
3	Extending effective draft temperature to cover full range of air velocity. Building and Environment, 2022, 210, 108738.	3.0	12
4	Index of ventilation effectiveness regarding energy performance considering cooling effect of air movement: Equivalent Thermal Utilization Effectiveness. Building and Environment, 2022, 212, 108809.	3.0	8
5	Contaminant removal and contaminant dispersion of air distribution for overall and local airborne infection risk controls. Science of the Total Environment, 2022, 833, 155173.	3.9	13
6	Thermal sensation, sick building syndrome symptoms, and physiological responses of occupants in environments with vertical air temperature differences. Journal of Thermal Biology, 2022, 108, 103276.	1.1	11
7	Stratum-air-distributed radiant-convective room air conditioner for heating. Energy and Buildings, 2022, 271, 112311.	3.1	9
8	Occupancy-aided ventilation for both airborne infection risk control and work productivity. Building and Environment, 2021, 188, 107506.	3.0	36
9	Predicted Mean Vote with skin wettedness from standard effective temperature model. Building and Environment, 2021, 187, 107412.	3.0	23
10	Extended predicted mean vote of thermal adaptations reinforced around thermal neutrality. Indoor Air, 2021, 31, 1227-1227.	2.0	7
11	Dilution-based evaluation of airborne infection risk - Thorough expansion of Wells-Riley model. Building and Environment, 2021, 194, 107674.	3.0	61
12	Novel demand-controlled optimization of constant-air-volume mechanical ventilation for indoor air quality, durability and energy saving. Applied Energy, 2021, 293, 116954.	5.1	31
13	Performance evaluation of mean radiant temperature calculated from inner surface temperatures of envelope with various emissivities. Building and Environment, 2021, 206, 108334.	3.0	3
14	Improving predicted mean vote with inversely determined metabolic rate. Sustainable Cities and Society, 2020, 53, 101870.	5.1	44
15	Experimental investigation of airflow pattern and turbulence characteristics of stratum ventilation in heating mode. Building and Environment, 2020, 186, 107339.	3.0	29
16	Predicted Mean Vote with skin temperature from standard effective temperature model. Building and Environment, 2020, 183, 107133.	3.0	32
17	Adaptiveâ€rational thermal comfort model: Adaptive predicted mean vote with variable adaptive coefficient. Indoor Air, 2020, 30, 1052-1062.	2.0	19
18	Multi-indicator evaluation on ventilation effectiveness of three ventilation methods: An experimental study. Building and Environment, 2020, 180, 107015.	3.0	24

SHENG ZHANG

#	Article	IF	CITATIONS
19	Standard effective temperature based adaptive-rational thermal comfort model. Applied Energy, 2020, 264, 114723.	5.1	33
20	Extending Predicted Mean Vote using adaptive approach. Building and Environment, 2020, 171, 106665.	3.0	26
21	Coupled thermal comfort control of thermal condition profile of air distribution and thermal preferences. Building and Environment, 2020, 177, 106867.	3.0	21
22	Fully mixed air model based cooling load estimation method for both stratum ventilation and displacement ventilation. Energy and Buildings, 2019, 199, 247-263.	3.1	11
23	Subzone Control of Air Distribution to Improve Thermal Comfort and Energy Efficiency. E3S Web of Conferences, 2019, 111, 02008.	0.2	0
24	Improved algorithm for adaptive coefficient of adaptive Predicted Mean Vote (aPMV). Building and Environment, 2019, 163, 106318.	3.0	24
25	Experimental investigation of thermal comfort with stratum ventilation using a pulsating air supply. Building and Environment, 2019, 165, 106416.	3.0	19
26	Heat removal efficiency of stratum ventilation for air-side modulation. Applied Energy, 2019, 238, 1237-1249.	5.1	26
27	Subzone control optimization of air distribution for thermal comfort and energy efficiency under cooling load uncertainty. Applied Energy, 2019, 251, 113378.	5.1	11
28	Robust evaluation method of thermal deviation of air distribution. Building and Environment, 2019, 158, 217-225.	3.0	9
29	Multi-criteria performance optimization for operation of stratum ventilation under heating mode. Applied Energy, 2019, 239, 969-980.	5.1	46
30	Subzone control method of stratum ventilation for thermal comfort improvement. Building and Environment, 2019, 149, 39-47.	3.0	42
31	Systematic comparisons of exit air temperature and wall temperature for modelling non-uniform thermal environment of stratum ventilation. Building and Environment, 2019, 149, 120-133.	3.0	8
32	Effects of operation parameters on performances of stratum ventilation for heating mode. Building and Environment, 2019, 148, 55-66.	3.0	76
33	Equivalent room air temperature based cooling load estimation method for stratum ventilation and displacement ventilation. Building and Environment, 2019, 148, 67-81.	3.0	20
34	Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving. Building and Environment, 2019, 147, 11-22.	3.0	100
35	Field study on adaptive thermal comfort in typical air conditioned classrooms. Building and Environment, 2018, 133, 73-82.	3.0	74
36	Modeling non-uniform thermal environment of stratum ventilation with supply and exit air conditions. Building and Environment, 2018, 144, 542-554.	3.0	34

SHENG ZHANG

#	Article	IF	CITATIONS
37	Dynamic control of room air temperature for stratum ventilation based on heat removal efficiency: Method and experimental validations. Building and Environment, 2018, 140, 107-118.	3.0	43
38	Heat removal efficiency based multi-node model for both stratum ventilation and displacement ventilation. Building and Environment, 2018, 143, 24-35.	3.0	33
39	Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty. Applied Energy, 2018, 228, 1020-1031.	5.1	55
40	Performance improvement of an ejector cooling system with thermal pumping effect (ECSTPE) by doubling evacuation chambers in parallel. Applied Energy, 2017, 187, 675-688.	5.1	19
41	Optimizing the set generating temperature to improve the designed performance of an ejector cooling system with thermal pumping effect (ECSTPE). Solar Energy, 2017, 157, 309-320.	2.9	12
42	Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving. Applied Energy, 2017, 204, 420-431.	5.1	95
43	Initial ratio optimization for the ejector cooling system with thermal pumping effect (ECSTPE). Energy Conversion and Management, 2016, 113, 281-289.	4.4	7
44	A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties. Energy, 2016, 94, 654-665.	4.5	136