
Goran Å inko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6350529/publications.pdf Version: 2024-02-01

CODAN ÅINKO

#	Article	IF	CITATIONS
1	Molar absorption coefficients for the reduced Ellman reagent: reassessment. Analytical Biochemistry, 2003, 312, 224-227.	2.4	435
2	Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. European Journal of Medicinal Chemistry, 2010, 45, 186-192.	5.5	154
3	Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Analytical Biochemistry, 2007, 370, 223-227.	2.4	103
4	Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles. Environmental Science and Pollution Research, 2015, 22, 19990-19999.	5.3	59
5	Pseudo-catalytic scavenging: Searching for a suitable reactivator of phosphorylated butyrylcholinesterase. Chemico-Biological Interactions, 2010, 187, 167-171.	4.0	53
6	para- andortho-Pyridinium aldoximes in reaction with acetylthiocholine. FEBS Letters, 2006, 580, 3167-3172.	2.8	44
7	Alteration of cholinesterase activity as possible mechanism of silver nanoparticle toxicity. Environmental Science and Pollution Research, 2014, 21, 1391-1400.	5.3	41
8	Oximes: Reactivators of phosphorylated acetylcholinesterase and antidotes in therapy against tabun poisoning. Chemico-Biological Interactions, 2008, 175, 173-179.	4.0	37
9	Metaproterenol, Isoproterenol, and Their Bisdimethylcarbamate Derivatives as Human Cholinesterase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 6716-6723.	6.4	37
10	Preparative HPLC separation of bambuterol enantiomers and stereoselective inhibition of human cholinesterases. Analytical and Bioanalytical Chemistry, 2006, 385, 1513-1519.	3.7	32
11	Interactions of pyridinium oximes with acetylcholinesterase. Chemico-Biological Interactions, 2010, 187, 172-176.	4.0	28
12	Oxime-assisted reactivation of tabun-inhibited acetylcholinesterase analysed by active site mutations. Toxicology, 2018, 406-407, 104-113.	4.2	28
13	Design and synthesis of N-substituted-2-hydroxyiminoacetamides and interactions with cholinesterases. Chemico-Biological Interactions, 2016, 259, 122-132.	4.0	27
14	Assessment of four organophosphorus pesticides as inhibitors of human acetylcholinesterase and butyrylcholinesterase. Scientific Reports, 2021, 11, 21486.	3.3	27
15	Structure-Activity Approach in the Reactivation of Tabun-Phosphorylated Human Acetylcholinesterase with Bispyridinium para-Aldoximes. Arhiv Za Higijenu Rada I Toksikologiju, 2007, 58, 201-209.	0.7	26
16	Mechanism of stereoselective interaction between butyrylcholinesterase and ethopropazine enantiomers. Biochimie, 2011, 93, 1797-1807.	2.6	26
17	Structural aspects of 4-aminoquinolines as reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase. Chemico-Biological Interactions, 2019, 308, 101-109.	4.0	26
18	The estimation of oxime efficiency is affected by the experimental design of phosphylated acetylcholinesterase reactivation. Toxicology Letters, 2018, 293, 222-228.	0.8	25

Goran Åinko

#	Article	IF	CITATIONS
19	Assessment of scoring functions and in silico parameters for AChE-ligand interactions as a tool for predicting inhibition potency. Chemico-Biological Interactions, 2019, 308, 216-223.	4.0	23
20	Targeting organophosphorus compounds poisoning by novel quinuclidine-3 oximes: development of butyrylcholinesterase-based bioscavengers. Archives of Toxicology, 2020, 94, 3157-3171.	4.2	21
21	Kinetic Model of Ethopropazine Interaction with Horse Serum Butyrylcholinesterase and Its Docking into the Active Site. Archives of Biochemistry and Biophysics, 2002, 398, 23-31.	3.0	20
22	Interaction between the zebrafish (Danio rerio) organic cation transporter 1 (Oct1) and endo- and xenobiotics. Aquatic Toxicology, 2017, 187, 18-28.	4.0	17
23	Pyridoxal oxime derivative potency to reactivate cholinesterases inhibited by organophosphorus compounds. Toxicology Letters, 2016, 262, 114-122.	0.8	14
24	Resorcinol-, catechol- and saligenin-based bronchodilating β2-agonists as inhibitors of human cholinesterase activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 789-797.	5.2	14
25	Peripheral site and acyl pocket define selective inhibition of mouse butyrylcholinesterase by two biscarbamates. Archives of Biochemistry and Biophysics, 2013, 529, 140-145.	3.0	13
26	Evaluation of high-affinity phenyltetrahydroisoquinoline aldoximes, linked through anti-triazoles, as reactivators of phosphylated cholinesterases. Toxicology Letters, 2020, 321, 83-89.	0.8	13
27	Interaction of silver nanoparticles with plasma transport proteins: A systematic study on impacts of particle size, shape and surface functionalization. Chemico-Biological Interactions, 2021, 335, 109364.	4.0	13
28	Enantioseparation, <i>in vitro</i> testing, and structural characterization of triple-binding reactivators of organophosphate-inhibited cholinesterases. Biochemical Journal, 2020, 477, 2771-2790.	3.7	12
29	<i>In vitro</i> inhibition of blood cholinesterase activities from cattle by triazole fungicides. Caryologia, 2013, 66, 346-350.	0.3	9
30	The Lock is the Key: Development of Novel Drugs through Receptor Based Combinatorial Chemistry. Acta Chimica Slovenica, 2017, 64, 15-39.	0.6	9
31	Interactions of Paraoxonase-1 with Pharmacologically Relevant Carbamates. Molecules, 2020, 25, 211.	3.8	8
32	Cholinesterase Interactions with Oximes. Current Bioactive Compounds, 2010, 6, 9-15.	0.5	7
33	Enzyme-catalyzed cascade synthesis of hydroxyiminoacetamides. Tetrahedron Letters, 2014, 55, 4338-4341.	1.4	5
34	Synthesis and In Vitro Screening of Novel Heterocyclic β-d-Gluco- and β-d-Galactoconjugates as Butyrylcholinesterase Inhibitors. Molecules, 2019, 24, 2833.	3.8	4
35	Separation, Conformation in Solution and Absolute Configuration of Ethopropazine Enantiomers. Enantiomer, 2002, 7, 149-156.	0.5	3
36	(42) Structure-inhibition relationships in the interaction of butyrylcholinesterase with bambuterol, haloxon and their leaving groups. Chemico-Biological Interactions, 2005, 157-158, 421-423.	4.0	3

#	Article	IF	CITATIONS
37	Inactivation of cholinesterases by silver and gold ions in vitro. Open Chemistry, 2013, 11, 935-944.	1.9	3
38	Use of connectivity index and simple topological parameters for estimating the inhibition potency of acetylcholinesterase. Saudi Pharmaceutical Journal, 2022, 30, 369-376.	2.7	3