Matthias Ringkamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/634931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain, 2020, 161, 1976-1982.	4.2	1,880
2	Sensory neurons and circuits mediating itch. Nature Reviews Neuroscience, 2014, 15, 19-31.	10.2	259
3	Separate Peripheral Pathways for Pruritus in Man. Journal of Neurophysiology, 2008, 100, 2062-2069.	1.8	238
4	Psychophysical and Physiological Evidence for Parallel Afferent Pathways Mediating the Sensation of Itch. Journal of Neuroscience, 2007, 27, 7490-7497.	3.6	179
5	A Role for Polymodal C-Fiber Afferents in Nonhistaminergic Itch. Journal of Neuroscience, 2008, 28, 7659-7669.	3.6	170
6	A Role for Nociceptive, Myelinated Nerve Fibers in Itch Sensation. Journal of Neuroscience, 2011, 31, 14841-14849.	3.6	142
7	Capsaicin Responses in Heat-Sensitive and Heat-Insensitive A-Fiber Nociceptors. Journal of Neuroscience, 2001, 21, 4460-4468.	3.6	105
8	Three functionally distinct classes of C-fibre nociceptors in primates. Nature Communications, 2014, 5, 4122.	12.8	85
9	Patterns of activity-dependent conduction velocity changes differentiate classes of unmyelinated mechano-insensitive afferents including cold nociceptors, in pig and in human. Pain, 2010, 148, 59-69.	4.2	62
10	Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density. Pain, 2013, 154, 2500-2511.	4.2	56
11	Peripheral Sensitization and Loss of Descending Inhibition Is a Hallmark of Chronic Pruritus. Journal of Investigative Dermatology, 2020, 140, 203-211.e4.	0.7	54
12	Pruriception and neuronal coding in nociceptor subtypes in human and nonhuman primates. ELife, 2021, 10, .	6.0	32
13	John J. Bonica Award Lecture: Peripheral neuronal hyperexcitability: the "low-hanging―target for safe therapeutic strategies in neuropathic pain. Pain, 2020, 161, S14-S26.	4.2	30
14	Nerve growth factor selectively decreases activity-dependent conduction slowing in mechano-insensitive C-nociceptors. Pain, 2011, 152, 2138-2146.	4.2	29
15	The Differential Effects of Two Sodium Channel Modulators on the Conductive Properties of C-Fibers in Pig Skin In Vivo. Anesthesia and Analgesia, 2012, 115, 560-571.	2.2	17
16	Conduction Properties Distinguish Unmyelinated Sympathetic Efferent Fibers and Unmyelinated Primary Afferent Fibers in the Monkey. PLoS ONE, 2010, 5, e9076.	2.5	15
17	Maximum axonal following frequency separates classes of cutaneous unmyelinated nociceptors in the pig. Journal of Physiology, 2021, 599, 1595-1610.	2.9	8
18	A sore spot: Central or peripheral generation of chronic neuropathic spontaneous pain?. Pain, 2014, 155, 1189-1191.	4.2	7

#	Article	IF	CITATIONS
19	Laser speckle imaging to improve clinical outcomes for patients with trigeminal neuralgia undergoing radiofrequency thermocoagulation. Journal of Neurosurgery, 2016, 124, 422-428.	1.6	7
20	Local Loperamide Injection Reduces Mechanosensitivity of Rat Cutaneous, Nociceptive C-Fibers. PLoS ONE, 2012, 7, e42105.	2.5	4
21	Solutions to the technical challenges embedded in the current methods for intraoperative peripheral nerve action potential recordings. Journal of Neurosurgery, 2020, 133, 884-893.	1.6	4
22	Artifact reduction by using alternating polarity stimulus pairs in intraoperative peripheral nerve action potential recording. Journal of Clinical Monitoring and Computing, 2021, 35, 1467-1475.	1.6	3