List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6348953/publications.pdf Version: 2024-02-01

ΔΝΙΝΙΑ CΑΤΑΝΙΙΑ

#	Article	IF	CITATIONS
1	Targeting Melanocortin Receptors as a Novel Strategy to Control Inflammation. Pharmacological Reviews, 2004, 56, 1-29.	7.1	397
2	Anti-inflammatory actions of the neuroimmunomodulator α-MSH. Trends in Immunology, 1997, 18, 140-145.	7.5	376
3	The neuropeptide α-MSH has specific receptors on neutrophils and reduces chemotaxis in vitro. Peptides, 1996, 17, 675-679.	1.2	197
4	Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia. Journal of Leukocyte Biology, 1998, 63, 740-745.	1.5	142
5	The Melanocortin System in Control of Inflammation. Scientific World Journal, The, 2010, 10, 1840-1853.	0.8	140
6	Antimicrobial effects of α-MSH peptides. Journal of Leukocyte Biology, 2000, 67, 233-239.	1.5	134
7	α-Melanocyte Stimulating Hormone in the Modulation of Host Reactions*. Endocrine Reviews, 1993, 14, 564-576.	8.9	132
8	Neuroprotective actions of melanocortins: a therapeutic opportunity. Trends in Neurosciences, 2008, 31, 353-360.	4.2	123
9	The Neuropeptide Alpha-Melanocyte-Stimulating Hormone Inhibits Experimental Arthritis in Rats. NeuroImmunoModulation, 1994, 1, 28-32.	0.9	102
10	\hat{I}_\pm -MSH Modulates Experimental Inflammatory Bowel Disease. Peptides, 1997, 18, 381-385.	1.2	94
11	Central Neurogenic Antiinflammatory Action of α-MSH: Modulation of Peripheral Inflammation Induced by Cytokines and Other Mediators of Inflammation. Neuroendocrinology, 1994, 59, 138-143.	1.2	89
12	Detrimental consequences of brain injury on peripheral cells. Brain, Behavior, and Immunity, 2009, 23, 877-884.	2.0	86
13	α-MSH Peptides Inhibit Production of Nitric Oxide and Tumor Necrosis Factor-α by Microglial Cells Activated with β-Amyloid and Interferon γ. Biochemical and Biophysical Research Communications, 1999, 263, 251-256.	1.0	85
14	The melanocortin system in leukocyte biology. Journal of Leukocyte Biology, 2007, 81, 383-392.	1.5	85
15	Central administration of the peptide α-MSH inhibits inflammation in the skin. Peptides, 1991, 12, 795-798.	1.2	82
16	α-Melanocyte-Stimulating Hormone Inhibits NF-κB Activation and IκBα Degradation in Human Glioma Cells and in Experimental Brain Inflammation. Experimental Neurology, 1999, 157, 359-365.	2.0	78
17	Mechanisms of action of adrenocorticotropic hormone and other melanocortins relevant to the clinical management of patients with multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 130-136.	1.4	78
18	A Potential Mechanism of Local Anti-Inflammatory Action of Alpha-Melanocyte-Stimulating Hormone within the Brain: Modulation of Tumor Necrosis Factor-Alpha Production by Human Astrocytic Cells. NeuroImmunoModulation, 1997, 4, 37-41.	0.9	75

#	Article	IF	CITATIONS
19	Inhibition of peripheral NF-κB activation by central action of α-melanocyte-stimulating hormone. Journal of Neuroimmunology, 1999, 99, 211-217.	1.1	75
20	α-MSH peptides inhibit acute inflammation induced in mice by rIL-1β, rIL-6, rTNF-α and endogenous pyrogen but not that caused by LTB4, PAF and rIL-8. Cytokine, 1992, 4, 320-328.	1.4	74
21	Inhibitory effect of calcitonin on growth hormone and insulin secretion in man. Metabolism: Clinical and Experimental, 1978, 27, 987-992.	1.5	72
22	Systemically administered α-melanocyte-stimulating peptides inhibit NF-κB activation in experimental brain inflammation. Brain Research, 1999, 836, 31-37.	1.1	71
23	Mechanisms of Antiinflammatory Action of the Neuroimmunomodulatory Peptide α-MSH. Annals of the New York Academy of Sciences, 1998, 840, 373-380.	1.8	69
24	α-Melanocyte-stimulating Hormone in Normal Human Physiology and Disease States. Trends in Endocrinology and Metabolism, 2000, 11, 304-308.	3.1	69
25	Treatment of Infantile Spasms. Journal of Child Neurology, 2011, 26, 1411-1421.	0.7	63
26	Changes in viremia and circulating interferon-α during hemodialysis in hepatitis C virus-positive patients: only coincidental phenomena?. American Journal of Kidney Diseases, 2003, 42, 143-150.	2.1	60
27	Inhibition of IL-1β-induced peripheral inflammation by peripheral and central administration of analogs of the neuropeptide α-MSH. Brain Research Bulletin, 1993, 32, 311-314.	1.4	56
28	The Anticytokine Neuropeptide α-Melanocyte-Stimulating Hormone in Synovial Fluid of Patients with Rheumatic Diseases: Comparisons with Other Anticytokine Molecules. NeuroImmunoModulation, 1994, 1, 321-328.	0.9	48
29	The human astrocytoma cell line U373MG produces monocyte chemotactic protein (MCP)-1 upon stimulation with β-amyloid protein. Neuroscience Letters, 2000, 283, 177-180.	1.0	48
30	Identification of Potential Therapeutic Targets in Malignant Mesothelioma Using Cell-Cycle Gene Expression Analysis. American Journal of Pathology, 2009, 174, 762-770.	1.9	48
31	Callipeltins F–I: new antifungal peptides from the marine sponge Latrunculia sp Tetrahedron, 2006, 62, 833-840.	1.0	46
32	Endogenous cytokine antagonists during myocardial ischemia and thrombolytic therapy. American Heart Journal, 1995, 130, 204-211.	1.2	44
33	Inhibition of Systemic Inflammation by Central Action of the Neuropeptide α-Melanocyte- Stimulating Hormone. NeuroImmunoModulation, 1999, 6, 187-192.	0.9	44
34	The Neuropeptide Alpha-Melanocyte-Stimulating Hormone: A Key Component Neuroimmunomodulation. NeuroImmunoModulation, 1994, 1, 93-99.	0.9	42
35	Plasma concentrations and anti-L-cytokine effects of α-melanocyte stimulating hormone in septic patients. Critical Care Medicine, 2000, 28, 1403-1407.	0.4	42
36	??-Melanocyte-stimulating hormone protects the allograft in experimental heart transplantation1. Transplantation, 2002, 74, 1678-1684.	0.5	42

#	Article	IF	CITATIONS
37	Endotoxin Causes Release of α-Melanocyte-Stimulating Hormone in Normal Human Subjects. NeuroImmunoModulation, 1995, 2, 258-262.	0.9	40
38	α-Melanocyte-Stimulating Hormone Is Decreased in Plasma of Patients with Acute Brain Injury. Journal of Neurotrauma, 2003, 20, 251-260.	1.7	37
39	The Neuropeptide αâ€MSH in Host Defense. Annals of the New York Academy of Sciences, 2000, 917, 227-231.	1.8	37
40	Autocrine αâ€melanocyteâ€stimulating hormone inhibits NFâ€₽̂B activation in human glioma. Journal of Neuroscience Research, 1999, 58, 684-689.	1.3	36
41	Novel α-MSH Peptide Analogues with Broad Spectrum Antimicrobial Activity. PLoS ONE, 2013, 8, e61614.	1.1	35
42	Proopiomelanocortin-Derived Peptides and Cytokines: Relations in Patients with Acquired Immunodeficiency Syndrome. Clinical Immunology and Immunopathology, 1993, 66, 73-79.	2.1	34
43	Novel α-Melanocyte Stimulating Hormone Peptide Analogues with High Candidacidal Activity. Journal of Medicinal Chemistry, 2003, 46, 850-855.	2.9	30
44	αâ€MSH in Systemic Inflammation: Central and Peripheral Actions. Annals of the New York Academy of Sciences, 1999, 885, 183-187.	1.8	30
45	Peptide Modulation of Inflammatory Processes within the Brain. NeuroImmunoModulation, 1998, 5, 178-183.	0.9	29
46	Melanocortin peptides inhibit production of proinflammatory cytokines in blood of HIV-infected patients. Peptides, 1998, 19, 1099-1104.	1.2	28
47	The Neuroimmunomodulatory Peptide αâ€MSH. Annals of the New York Academy of Sciences, 2000, 917, 221-226.	1.8	28
48	Multiple beneficial effects of melanocortin MC4 receptor agonists in experimental neurodegenerative disorders: Therapeutic perspectives. Progress in Neurobiology, 2017, 148, 40-56.	2.8	28
49	The Neuropeptide $\hat{l}\pm$ -MSH in HIV Infection and Other Disorders in Humansa. Annals of the New York Academy of Sciences, 1998, 840, 848-856.	1.8	27
50	Anti-Inflammatory Effects of $\hat{1}\pm$ -Melanocyte-Stimulating Hormone in Celiac Intestinal Mucosa. NeuroImmunoModulation, 2002, 10, 208-216.	0.9	27
51	Protective action of NDP-MSH in experimental subarachnoid hemorrhage. Experimental Neurology, 2012, 234, 230-238.	2.0	27
52	?-Melanocyte-Stimulating Hormone Peptides in Host Responses From Basic Evidence to Human Research. Annals of the New York Academy of Sciences, 1993, 680, 412-423.	1.8	26
53	Plasma concentrations of αâ€melanocyteâ€stimulating hormone are elevated in patients on chronic haemodialysis. Nephrology Dialysis Transplantation, 2000, 15, 1212-1216.	0.4	26
54	WITHIN-PATIENT VARIABILITY OF HORMONE AND CYTOKINE CONCENTRATIONS IN HEART FAILURE. Pharmacological Research, 1998, 37, 213-217.	3.1	25

#	Article	IF	CITATIONS
55	The peptide NDP-MSH induces phenotype changes in the heart that resemble ischemic preconditioning. Peptides, 2010, 31, 116-122.	1.2	25
56	Plasma ACTH-response to the corticotropin releasing factor in patients with Cushing's disease. Comparison with the lysine-vasopressin test. Metabolism: Clinical and Experimental, 1984, 33, 478-481.	1.5	23
57	Gene Expression Profiling Reveals Multiple Protective Influences of the Peptide α-Melanocyte-Stimulating Hormone in Experimental Heart Transplantation. Journal of Immunology, 2005, 175, 3391-3401.	0.4	23
58	PRODUCTION AND EFFECTS OF α-MELANOCYTE-STIMULATING HORMONE DURING ACUTE LUNG INJURY. Shock, 2007, 27, 326-333.	1.0	23
59	Plasma Concentration of Cytokine Antagonists in Patients with HIV Infection. NeuroImmunoModulation, 1994, 1, 42-49.	0.9	22
60	Melanocortin peptides inhibit urate crystal-induced activation of phagocytic cells. Arthritis Research and Therapy, 2009, 11, R151.	1.6	22
61	PLASMA PROLACTIN RESPONSE TO LUTEINIZING HORMONE RELEASING HORMONE IN ACROMEGALIC PATIENTS. Journal of Clinical Endocrinology and Metabolism, 1976, 43, 689-691.	1.8	21
62	Alteration in the Transcriptional Profile of Livers from Brain-dead Organ Donors. Transplantation, 2006, 82, 69-79.	0.5	20
63	Reduced Expression of the Melanocortin-1 Receptor in Human Liver during Brain Death. NeuroImmunoModulation, 2006, 13, 51-55.	0.9	19
64	The synthetic melanocortin (CKPV)2 exerts broad anti-inflammatory effects in human neutrophils. Peptides, 2007, 28, 2016-2022.	1.2	19
65	Design and Synthesis of Melanocortin Peptides with Candidacidal and Anti-TNF-α Properties. Journal of Medicinal Chemistry, 2005, 48, 1384-1388.	2.9	18
66	Binding of Anti-Inflammatoryα-Melanocyte-Stimulating-Hormone Peptides and Proinflammatory Cytokines to Receptors on Melanoma Cells. NeuroImmunoModulation, 1994, 1, 121-126.	0.9	17
67	Volume-regulated Clâ~'channels in human pleural mesothelioma cells. FEBS Letters, 2004, 559, 45-50.	1.3	17
68	Inhibitory Effects of the Peptide (CKPV)2 on Endotoxin-Induced Host Reactions. Journal of Surgical Research, 2006, 131, 209-214.	0.8	17
69	Cytokine Antagonists in Infectious and Inflammatory Disorders. Annals of the New York Academy of Sciences, 1994, 741, 149-161.	1.8	16
70	α-Melanocyte-stimulating-hormone (α-MSH) modulates human chondrocyte activation induced by proinflammatory cytokines. BMC Musculoskeletal Disorders, 2015, 16, 154.	0.8	16
71	Administration of gonadotropin-releasing hormone analog as adjunctive therapy in women systemic lupus erythematosus. Arthritis and Rheumatism, 1989, 32, 1186-1188.	6.7	15
72	Elevated concentrations of plasma α-melanocyte stimulating hormone are associated with reduced disease progression in HIV-infected patients. Translational Research, 1999, 133, 309-315.	2.4	14

#	Article	IF	CITATIONS
73	Pyrogenic and Inflammatory Actions of Cytokines and Their Modulation by Neuropeptides: Techniques and Interpretations. Methods in Neurosciences, 1993, 17, 61-77.	0.5	13
74	Treatment with α-melanocyte stimulating hormone preserves calcium regulatory proteins in rat heart allografts. Brain, Behavior, and Immunity, 2008, 22, 817-823.	2.0	13
75	Modulatory effects of NDP-MSH in the regenerating liver after partial hepatectomy in rats. Peptides, 2013, 50, 145-152.	1.2	13
76	Structure?function Relationships and Conformational Properties of ?-MSH(6?13) Analogues with Candidacidal Activity. Chemical Biology and Drug Design, 2007, 69, 68-74.	1.5	12
77	NDP-MSH treatment recovers marginal lungs during ex vivo lung perfusion (EVLP). Peptides, 2021, 141, 170552.	1.2	12
78	Autocrine inhibitory influences of Î \pm -melanocyte-stimulating hormone in malignant pleural mesothelioma. Journal of Leukocyte Biology, 2004, 75, 253-259.	1.5	11
79	Alpha-melanocyte stimulating hormone in modulation of inflammatory reactions. Pediatric Endocrinology Reviews, 2003, 1, 101-8.	1.2	11
80	Cushing's Syndrome due to Unilateral Adrenal Nodular Hyperplasia with Incomplete Inhibition of the Contralateral Gland. Hormone Research, 1986, 23, 9-15.	1.8	10
81	Protective Effects of Melanocortins in Systemic Host Reactions. Advances in Experimental Medicine and Biology, 2010, 681, 117-125.	0.8	10
82	Molecular Changes Induced in Rat Liver by Hemorrhage and Effects of Melanocortin Treatment. Anesthesiology, 2012, 116, 692-700.	1.3	10
83	Hormonal Response During Antigenic Challenge in Normal Subjects. International Journal of Neuroscience, 1990, 51, 295-296.	0.8	9
84	Dexamethasone facilitates release of the neuropeptide α-MSH. Brain Research Bulletin, 1991, 26, 727-730.	1.4	9
85	Clinical experience with the adrenal scanning agents iodine 131-19-iodocholesterol and selenium 75-6-selenomethylcholesterol. European Journal of Nuclear Medicine and Molecular Imaging, 1991, 18, 817-23.	2.2	8
86	α-Melanocyte Stimulating Hormone in Critically Injured Trauma Patients. Journal of Trauma, 2009, 66, 465-469.	2.3	8
87	EVIDENCE FOR DIFFERING DOPAMINERGIC ACTIVITY IN CHILDHOOD―OR ADULTâ€ONSET OBESITY. Clinical Endocrinology, 1985, 22, 75-81.	1.2	7
88	Activation of Melanocortin Receptors as a Potential Strategy to Reduce Local and Systemic Reactions Induced by Respiratory Viruses. Frontiers in Endocrinology, 2020, 11, 569241.	1.5	7
89	Gonadotropin response to gonadotropin releasing hormone in acute schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1984, 8, 411-417.	2.5	6
90	Evidence for an Impairment of the Immune-Adrenal Circuit in Patients with Acquired Immunodeficiency Syndrome. Hormone and Metabolic Research, 1990, 22, 597-598.	0.7	6

#	Article	IF	CITATIONS
91	Modulatory effects of NDP-MSH in the regenerating liver after partial hepatectomy in rats. Peptides, 2013, 50, 145-52.	1.2	4
92	Scintigraphic Study of Extra-adrenal Ganglioneuroma in a Patient with Overlap between Multiple Endocrine Neoplasia Types 1 and 2. Clinical Nuclear Medicine, 1992, 17, 573-576.	0.7	3
93	Corticotropin releasing factor stimulates cAMP formation in pituitary corticotropic tumor cells. Life Sciences, 1984, 34, 359-363.	2.0	2
94	The neuropeptide α-MSH in control of fever. Pharmacological Research, 1992, 26, 72-73.	3.1	2
95	SOLITARY THYROID NODULES. Lancet, The, 1985, 326, 1237.	6.3	1
96	Antimicrobial properties of melanocortins: comment to the manuscript "Anti-Candida activity of α-melanocyte-stimulating hormone (α-MSH) peptides―by Isabella Rauch et al Journal of Leukocyte Biology, 2009, 85, 373-373.	1.5	1
97	The Anticytokine Peptide, a-MSH, in Infectious and Inflammatory Disorders. , 1998, , .		0