
Elizabeth A Buffalo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/634878/publications.pdf Version: 2024-02-01

FUZARETH A RUFEALO

#	Article	IF	CITATIONS
1	Value representation in the monkey hippocampus. Trends in Cognitive Sciences, 2022, 26, 4-5.	4.0	1
2	Event segmentation reveals working memory forgetting rate. IScience, 2022, 25, 103902.	1.9	12
3	Lessons from Leslie: A Tribute to an Extraordinary Scientist and Mentor. Trends in Neurosciences, 2021, 44, 241-243.	4.2	1
4	Gender bias in academia: A lifetime problem that needs solutions. Neuron, 2021, 109, 2047-2074.	3.8	106
5	The grid code for ordered experience. Nature Reviews Neuroscience, 2021, 22, 637-649.	4.9	31
6	Improving rigor and reproducibility in nonhuman primate research. American Journal of Primatology, 2021, 83, e23331.	0.8	14
7	Device-Embedded Cameras for Eye Tracking-Based Cognitive Assessment: Implications for Teleneuropsychology. Telemedicine Journal and E-Health, 2020, 26, 477-481.	1.6	10
8	A temporal record of the past with a spectrum of time constants in the monkey entorhinal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20274-20283.	3.3	59
9	Anatomy and Function of the Primate Entorhinal Cortex. Annual Review of Vision Science, 2020, 6, 411-432.	2.3	39
10	From basic brain research to treating human brain disorders. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26167-26172.	3.3	48
11	Recognition Memory in Marmoset and Macaque Monkeys: A Comparison of Active Vision. Journal of Cognitive Neuroscience, 2019, 31, 1318-1328.	1.1	17
12	Neurons in Primate Entorhinal Cortex Represent Gaze Position in Multiple Spatial Reference Frames. Journal of Neuroscience, 2018, 38, 2430-2441.	1.7	57
13	Grid cells map the visual world. Nature Neuroscience, 2018, 21, 161-162.	7.1	22
14	Entorhinal cortex receptive fields are modulated by spatial attention, even without movement. ELife, 2018, 7, .	2.8	36
15	Device-Embedded Cameras for Eye Tracking–Based Cognitive Assessment: Validation With Paper-Pencil and Computerized Cognitive Composites. Journal of Medical Internet Research, 2018, 20, e11143.	2.1	31
16	Differential Contribution of Low- and High-level Image Content to Eye Movements in Monkeys and Humans. Cerebral Cortex, 2017, 27, 279-293.	1.6	3
17	Auditory landscape on the cognitive map. Nature, 2017, 543, 631-632.	13.7	1
18	Spatial responses, immediate experience, and memory in the monkey hippocampus. Current Opinion in Behavioral Sciences, 2017, 17, 155-160.	2.0	19

Elizabeth A Buffalo

#	Article	IF	CITATIONS
19	Web Camera Based Eye Tracking to Assess Visual Memory on a Visual Paired Comparison Task. Frontiers in Neuroscience, 2017, 11, 370.	1.4	38
20	Modeling Visual Exploration in Rhesus Macaques with Bottom-Up Salience and Oculomotor Statistics. Frontiers in Integrative Neuroscience, 2016, 10, 23.	1.0	3
21	Cover Image, Volume 26, Issue 10. Hippocampus, 2016, 26, C1-C1.	0.9	0
22	Getting directions from the hippocampus: The neural connection between looking and memory. Neurobiology of Learning and Memory, 2016, 134, 135-144.	1.0	79
23	Neuronal representation of visual borders in the primate entorhinal cortex. Journal of Vision, 2016, 16, 9.	0.1	7
24	Declarative Memory, Neural Basis of. , 2015, , 923-926.		1
25	Saccade direction encoding in the primate entorhinal cortex during visual exploration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15743-15748.	3.3	63
26	Bridging the gap between spatial and mnemonic views of the hippocampal formation. Hippocampus, 2015, 25, 713-718.	0.9	33
27	Memory and Space: Towards an Understanding of the Cognitive Map. Journal of Neuroscience, 2015, 35, 13904-13911.	1.7	247
28	Social relevance drives viewing behavior independent of low-level salience in rhesus macaques. Frontiers in Neuroscience, 2014, 8, 354.	1.4	12
29	A nonparametric method for detecting fixations and saccades using cluster analysis: Removing the need for arbitrary thresholds. Journal of Neuroscience Methods, 2014, 227, 121-131.	1.3	48
30	Distinct frequencies mark the direction of cortical communication. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14316-14317.	3.3	3
31	Oscillatory correlates of memory in non-human primates. NeuroImage, 2014, 85, 694-701.	2.1	14
32	Attentional Modulation of Cell-Class-Specific Gamma-Band Synchronization in Awake Monkey Area V4. Neuron, 2013, 80, 1077-1089.	3.8	174
33	Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13144-13149.	3.3	234
34	Learning and Memory. , 2013, , 1029-1051.		1
35	A map of visual space in the primate entorhinal cortex. Nature, 2012, 491, 761-764.	13.7	424
36	Detecting cognitive impairment by eye movement analysis using automatic classification algorithms. Journal of Neuroscience Methods, 2011, 201, 196-203.	1.3	95

Elizabeth A Buffalo

#	Article	IF	CITATIONS
37	Laminar differences in gamma and alpha coherence in the ventral stream. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11262-11267.	3.3	547
38	Synchronous neural activity and memory formation. Current Opinion in Neurobiology, 2010, 20, 150-155.	2.0	170
39	A backward progression of attentional effects in the ventral stream. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 361-365.	3.3	252
40	Recognition memory signals in the macaque hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 401-406.	3.3	79
41	Gamma-Band Synchronization in the Macaque Hippocampus and Memory Formation. Journal of Neuroscience, 2009, 29, 12521-12531.	1.7	159
42	Lateralized spatial and object memory encoding in entorhinal and perirhinal cortices. Learning and Memory, 2009, 16, 433-438.	0.5	44
43	Distinct roles for medial temporal lobe structures in memory for objects and their locations. Learning and Memory, 2006, 13, 638-643.	0.5	113
44	Empirical mode decomposition of field potentials from macaque V4 in visual spatial attention. Biological Cybernetics, 2005, 92, 380-392.	0.6	73
45	Visual responses to targets and distracters by inferior temporal neurons after lesions of extrastriate areas V4 and TEO. NeuroReport, 2004, 15, 1611-1615.	0.6	13
46	Impaired Recognition Memory in Monkeys after Damage Limited to the Hippocampal Region. Journal of Neuroscience, 2000, 20, 451-463.	1.7	406
47	Profound Amnesia After Damage to the Medial Temporal Lobe: A Neuroanatomical and Neuropsychological Profile of Patient E. P Journal of Neuroscience, 2000, 20, 7024-7036.	1.7	128
48	Perception and Recognition Memory in Monkeys Following Lesions of Area TE and Perirhinal Cortex. Learning and Memory, 2000, 7, 375-382.	0.5	7
49	Operant Test Battery Performance in Children. Neurotoxicology and Teratology, 1999, 21, 223-230.	1.2	91
50	The human perirhinal cortex and recognition memory. Hippocampus, 1998, 8, 330-339.	0.9	227
51	A reexamination of the concurrent discrimination learning task: The importance of anterior inferotemporal cortex, area TE Behavioral Neuroscience, 1998, 112, 3-14.	0.6	68
52	Acute behavioral effects of MK-801 in rhesus monkeys: Assessment using an operant test battery. Pharmacology Biochemistry and Behavior, 1994, 48, 935-940.	1.3	62
53	Acute effects of caffeine on several operant behaviors in rhesus monkeys. Pharmacology Biochemistry and Behavior, 1993, 46, 733-737.	1.3	25