Frédéric Lemaître

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6348573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic Electrochemiluminescence Imaging of Single Giant Liposome Opening at Polarized Electrodes. Analytical Chemistry, 2022, 94, 1686-1696.	6.5	14
2	Electrochemical Fluorescence Switch of Organic Fluorescent or Fluorogenic Molecules. Chemical Record, 2021, 21, 2193-2202.	5.8	11
3	Simulations of amperometric monitoring of exocytosis: moderate pH variations within the cell-electrode cleft with the buffer diffusion. Analytical and Bioanalytical Chemistry, 2021, 413, 6769-6776.	3.7	3
4	Finding Adapted Quinones for Harvesting Electrons from Photosynthetic Algae Suspensions. ChemElectroChem, 2021, 8, 2968-2978.	3.4	10
5	Recent developments concerning the investigation of exocytosis with amperometry. Current Opinion in Electrochemistry, 2021, 29, 100751.	4.8	3
6	Overview and outlook of the strategies devoted to electrofluorescence surveys: Application to single cell secretion analysis. TrAC - Trends in Analytical Chemistry, 2020, 132, 116055.	11.4	5
7	Underlying mechanisms in microbial solar cells: how modeling can help. Sustainable Energy and Fuels, 2020, 4, 6004-6010.	4.9	4
8	Mediator-Microorganism Interaction in Microbial Solar Cell: a Fluo-Electrochemical Insight. Analytical Chemistry, 2020, 92, 7532-7539.	6.5	19
9	A Fluorescent False Neurotransmitter as a Dual Electrofluorescent Probe for Secretory Cell Models. ChemPlusChem, 2019, 84, 1578-1586.	2.8	6
10	Diverting photosynthetic electrons from suspensions of Chlamydomonas reinhardtii algae - New insights using an electrochemical well device. Electrochimica Acta, 2019, 304, 465-473.	5.2	10
11	Electroactive fluorescent false neurotransmitter FFN102 partially replaces dopamine in PC12 cell vesicles. Biophysical Chemistry, 2019, 245, 1-5.	2.8	10
12	Coupling electrochemistry and TIRF-microscopy with the fluorescent false neurotransmitter FFN102 supports the fluorescence signals during single vesicle exocytosis detection. Biophysical Chemistry, 2018, 235, 48-55.	2.8	13
13	Investigation of photocurrents resulting from a living unicellular algae suspension with quinones over time. Chemical Science, 2018, 9, 8271-8281.	7.4	53
14	Downstream Simultaneous Electrochemical Detection of Primary Reactive Oxygen and Nitrogen Species Released by Cell Populations in an Integrated Microfluidic Device. Analytical Chemistry, 2018, 90, 9386-9394.	6.5	31
15	A Dual Functional Electroactive and Fluorescent Probe for Coupled Measurements of Vesicular Exocytosis with High Spatial and Temporal Resolution. Angewandte Chemie - International Edition, 2017, 56, 2366-2370.	13.8	31
16	A Dual Functional Electroactive and Fluorescent Probe for Coupled Measurements of Vesicular Exocytosis with High Spatial and Temporal Resolution. Angewandte Chemie, 2017, 129, 2406-2410.	2.0	8
17	Redesigning the QA binding site of Photosystem II allows reduction of exogenous quinones. Nature Communications, 2017, 8, 15274.	12.8	33
18	Electrocatalytic Mechanism Involving Michaelis–Menten Kinetics at the Preparative Scale: Theory and Applicability to Photocurrents from a Photosynthetic Algae Suspension With Quinones. ChemPhysChem, 2017, 18, 2643-2650.	2.1	15

#	Article	IF	CITATIONS
19	Electrochemical Harvesting of Photosynthetic Electrons from Unicellular Algae Population at the Preparative Scale by Using 2,6-dichlorobenzoquinone. Electrochimica Acta, 2017, 236, 337-342.	5.2	32
20	Indium Tin Oxide Microsystem for Electrochemical Detection of Exocytosis of Migratory Dendritic Cells. Electroanalysis, 2017, 29, 197-202.	2.9	1
21	More Transparency in BioAnalysis of Exocytosis: Coupling of Electrochemistry and Fluorescence Microscopy at ITO Electrodes. BIO Web of Conferences, 2016, 6, 01004.	0.2	0
22	Multiâ€chambers Microsystem for Simultaneous and Direct Electrochemical Detection of Reactive Oxygen and Nitrogen Species Released by Cell Populations. Electroanalysis, 2016, 28, 1865-1872.	2.9	17
23	Vesicular exocytosis and microdevices – microelectrode arrays. Analyst, The, 2015, 140, 3687-3695.	3.5	25
24	Evaluation of photosynthetic electrons derivation by exogenous redox mediators. Biophysical Chemistry, 2015, 205, 1-8.	2.8	33
25	CHAPTER 6. Real Time Monitoring of Peroxynitrite by Stimulation of Macrophages with Ultramicroelectrodes. RSC Detection Science, 2015, , 96-120.	0.0	0
26	Quantitative Analyses of ROS and RNS Production in Breast Cancer Cell Lines Incubated with Ferrocifens. ChemMedChem, 2014, 9, 1286-1293.	3.2	46
27	Electrochemical Detection of Nitric Oxide and Peroxynitrite Anion in Microchannels at Highly Sensitive Platinum-Black Coated Electrodes. Application to ROS and RNS Mixtures prior to Biological Investigations. Electrochimica Acta, 2014, 144, 111-118.	5.2	37
28	Recent advances in Electrochemical Detection of Exocytosis. Electrochimica Acta, 2014, 140, 457-466.	5.2	30
29	Amperometric detection of vesicular exocytosis from BON cells at carbon fiber microelectrodes. Electrochimica Acta, 2014, 126, 74-80.	5.2	21
30	Vesicular release of neurotransmitters: converting amperometric measurements into size, dynamics and energetics of initial fusion pores. Faraday Discussions, 2013, 164, 33.	3.2	33
31	Highly Sensitive Platinumâ€Black Coated Platinum Electrodes for Electrochemical Detection of Hydrogen Peroxide and Nitrite in Microchannel. Electroanalysis, 2013, 25, 895-902.	2.9	71
32	Indium Tin Oxide devices for amperometric detection of vesicular release by single cells. Biophysical Chemistry, 2012, 162, 14-21.	2.8	34
33	Coupling Amperometry and Total Internal Reflection Fluorescence Microscopy at ITO Surfaces for Monitoring Exocytosis of Single Vesicles. Angewandte Chemie - International Edition, 2011, 50, 5081-5084.	13.8	68
34	Prediction of Local pH Variations during Amperometric Monitoring of Vesicular Exocytotic Events at Chromaffin Cells. ChemPhysChem, 2010, 11, 2931-2941.	2.1	10
35	Invariance of Exocytotic Events Detected by Amperometry as a Function of the Carbon Fiber Microelectrode Diameter. Analytical Chemistry, 2009, 81, 3087-3093.	6.5	26
36	Electrochemical Monitoring of Single Cell Secretion: Vesicular Exocytosis and Oxidative Stress. Chemical Reviews, 2008, 108, 2585-2621.	47.7	354

Frédéric Lemaître

#	Article	IF	CITATIONS
37	Vesicular Exocytosis under Hypotonic Conditions Shows Two Distinct Populations of Dense Core Vesicles in Bovine Chromaffin Cells. ChemPhysChem, 2007, 8, 578-585.	2.1	31
38	The Nature and Efficiency of Neurotransmitter Exocytosis also Depend on Physicochemical Parameters. ChemPhysChem, 2007, 8, 1597-1605.	2.1	14
39	Relationship between amperometric pre-spike feet and secretion granule composition in Chromaffin cells: An overview. Biophysical Chemistry, 2007, 129, 181-189.	2.8	43
40	Comparison of apex and bottom secretion efficiency at chromaffin cells as measured by amperometry. Biophysical Chemistry, 2007, 127, 165-171.	2.8	39
41	Regulation of Exocytosis in Chromaffin Cells by Trans-Insertion of Lysophosphatidylcholine and Arachidonic Acid into the Outer Leaflet of the Cell Membrane. ChemBioChem, 2006, 7, 1998-2003.	2.6	81
42	Coupling of Electrochemistry and Fluorescence Microscopy at Indium Tin Oxide Microelectrodes for the Analysis of Single Exocytotic Events. Angewandte Chemie - International Edition, 2006, 45, 4000-4003.	13.8	82
43	The Pd3(dppm)3(CO)2+ Cluster: An Efficient Electrochemically Assisted Lewis Acid Catalyst for the Fluorination and Alcoholysis of Acyl Chlorides ChemInform, 2003, 34, no.	0.0	0
44	The Pd3(dppm)3(CO)2+Cluster: An Efficient Electrochemically Assisted Lewis Acid Catalyst for the Fluorination and Alcoholysis of Acyl Chlorides. Journal of Organic Chemistry, 2002, 67, 7537-7540.	3.2	17
45	From FFN dual probe screening to ITO microdevice for exocytosis monitoring: electrochemical and fluorescence requirements. ChemElectroChem, 0, , .	3.4	1