
Fang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6348518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineered Small Extracellular Vesicles as a FGL1/PD‣1 Dualâ€Targeting Delivery System for Alleviating Immune Rejection. Advanced Science, 2022, 9, e2102634.	11.2	18
2	Cellular membrane-based vesicles displaying a reconstructed B cell maturation antigen for multiple myeloma therapy by dual targeting APRIL and BAFF. Acta Biomaterialia, 2022, 143, 406-417.	8.3	2
3	Engineering PD-L1 Cellular Nanovesicles Encapsulating Epidermal Growth Factor for Deep Second-Degree Scald Treatment. Journal of Biomedical Nanotechnology, 2022, 18, 898-908.	1.1	2
4	PD-1 Cellular Nanovesicles Carrying Gemcitabine to Inhibit the Proliferation of Triple Negative Breast Cancer Cell. Pharmaceutics, 2022, 14, 1263.	4.5	4
5	PD-L1 cellular nanovesicles carrying rapamycin inhibit alloimmune responses in transplantation. Biomaterials Science, 2021, 9, 1246-1255.	5.4	9
6	Exosomal Vimentin from Adipocyte Progenitors Protects Fibroblasts against Osmotic Stress and Inhibits Apoptosis to Enhance Wound Healing. International Journal of Molecular Sciences, 2021, 22, 4678.	4.1	15
7	Exosomal PD‣1 functions as an immunosuppressant to promote wound healing. Journal of Extracellular Vesicles, 2020, 9, 1709262.	12.2	67
8	Exosomal vimentin from adipocyte progenitors accelerates wound healing. Cytoskeleton, 2020, 77, 399-413.	2.0	19
9	Engineering Programmed Death Ligand-1/Cytotoxic T-Lymphocyte-Associated Antigen-4 Dual-Targeting Nanovesicles for Immunosuppressive Therapy in Transplantation. ACS Nano, 2020, 14, 7959-7969.	14.6	34
10	Coculture of P. aeruginosa and S. aureus on cell derived matrix - An in vitro model of biofilms in infected wounds. Journal of Microbiological Methods, 2020, 175, 105994.	1.6	7
11	Toll-like receptor 2 and Toll-like receptor 4 exhibit distinct regulation of cancer cell stemness mediated by cell death-induced high-mobility group box 1. EBioMedicine, 2019, 40, 135-150.	6.1	26
12	Quantitative proteomic characterization and comparison of T helper 17 and induced regulatory T cells. PLoS Biology, 2018, 16, e2004194.	5.6	17
13	Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. Journal of Cell Science, 2017, 130, 892-902.	2.0	131
14	Selective regulation of Notch ligands during angiogenesis is mediated by vimentin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4574-E4581.	7.1	86
15	Intermediate Filaments and the Regulation of Cell Motility during Regeneration and Wound Healing. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022046.	5.5	82
16	Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Advanced Healthcare Materials, 2017, 6, 1700258.	7.6	38
17	Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohydrate Polymers, 2016, 148, 259-271.	10.2	116
18	Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β–Slug signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4320-7.	7.1	287

FANG CHENG

#	Article	IF	CITATIONS
19	Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomaterialia, 2016, 46, 286-298.	8.3	151
20	Granzyme B Deficiency Protects against Angiotensin II–Induced Cardiac Fibrosis. American Journal of Pathology, 2016, 186, 87-100.	3.8	44
21	Keratins Stabilize Hemidesmosomes through Regulation of β4-Integrin Turnover. Journal of Investigative Dermatology, 2015, 135, 1609-1620.	0.7	52
22	Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers. Cell Reports, 2015, 11, 1511-1518.	6.4	157
23	Vimentin–ERK Signaling Uncouples Slug Gene Regulatory Function. Cancer Research, 2015, 75, 2349-2362.	0.9	112