Rad Sadri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6348460/publications.pdf

Version: 2024-02-01

304368 454577 1,944 29 22 30 citations h-index g-index papers 30 30 30 2036 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy, 2015, 89, 1065-1086.	4.5	226
2	An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Research Letters, 2014, 9, 151.	3.1	195
3	A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids. Journal of Colloid and Interface Science, 2017, 504, 115-123.	5.0	147
4	A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement. Renewable and Sustainable Energy Reviews, 2014, 30, 29-44.	8.2	126
5	Performance dependence of thermosyphon on the functionalization approaches: An experimental study on thermo-physical properties of graphene nanoplatelet-based water nanofluids. Energy Conversion and Management, 2015, 92, 322-330.	4.4	123
6	Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Applied Mathematics and Computation, 2014, 239, 153-170.	1.4	112
7	A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties. Journal of Colloid and Interface Science, 2018, 509, 140-152.	5.0	90
8	Synthesis of ethylene glycol-treated Graphene Nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant. Energy Conversion and Management, 2015, 101, 767-777.	4.4	83
9	Nanofluid based on activated hybrid of biomass carbon/graphene oxide: Synthesis, thermo-physical and electrical properties. International Communications in Heat and Mass Transfer, 2016, 72, 10-15.	2.9	79
10	An experimental investigation on the performance of a flat-plate solar collector using eco-friendly treated graphene nanoplatelets–water nanofluids. Journal of Thermal Analysis and Calorimetry, 2019, 138, 609-621.	2.0	78
11	Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid. Energy Conversion and Management, 2015, 105, 355-367.	4.4	69
12	A comprehensive review on nanofluid operated solar flat plate collectors. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1309-1343.	2.0	69
13	A novel, eco-friendly technique for covalent functionalization of graphene nanoplatelets and the potential of their nanofluids for heat transfer applications. Chemical Physics Letters, 2017, 675, 92-97.	1.2	68
14	Numerical Study of Entropy Generation in a Flowing Nanofluid Used in Micro- and Minichannels. Entropy, 2013, 15, 144-155.	1.1	67
15	A review of heating/cooling processes using nanomaterials suspended in refrigerants and lubricants. International Journal of Heat and Mass Transfer, 2020, 153, 119611.	2.5	67
16	Study of environmentally friendly and facile functionalization of graphene nanoplatelet and its application in convective heat transfer. Energy Conversion and Management, 2017, 150, 26-36.	4.4	52
17	Synthesis of polyethylene glycol-functionalized multi-walled carbon nanotubes with a microwave-assisted approach for improved heat dissipation. RSC Advances, 2015, 5, 35425-35434.	1.7	46
18	Experimental study on thermo-physical and rheological properties of stable and green reduced graphene oxide nanofluids: Hydrothermal assisted technique. Journal of Dispersion Science and Technology, 2017, 38, 1302-1310.	1.3	39

#	Article	IF	CITATIONS
19	CFD modeling of turbulent convection heat transfer of nanofluids containing green functionalized graphene nanoplatelets flowing in a horizontal tube: Comparison with experimental data. Journal of Molecular Liquids, 2018, 269, 152-159.	2.3	39
20	Numerical study of turbulent heat transfer of nanofluids containing eco-friendly treated carbon nanotubes through a concentric annular heat exchanger. International Journal of Heat and Mass Transfer, 2018, 127, 403-412.	2.5	30
21	A Comprehensive Review of Milk Fouling on Heated Surfaces. Critical Reviews in Food Science and Nutrition, 2015, 55, 1724-1743.	5.4	29
22	Experimental Study on Heat Transfer and Thermo-Physical Properties of Covalently Functionalized Carbon Nanotubes Nanofluids in an Annular Heat Exchanger: A Green and Novel Synthesis. Energy & & Sunction & Sunc	2.5	29
23	Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system. Journal of Colloid and Interface Science, 2015, 454, 245-255.	5.0	23
24	Investigation on the Use of Graphene Oxide as Novel Surfactant for Stabilizing Carbon Based Materials. Journal of Dispersion Science and Technology, 2016, 37, 1395-1407.	1.3	17
25	Controlled physical properties and growth mechanism of manganese silicide nanorods. Journal of Alloys and Compounds, 2021, 851, 156693.	2.8	14
26	Exploration of 2D Ti3C2 MXene for all solution processed piezoelectric nanogenerator applications. Scientific Reports, 2021, 11, 17432.	1.6	14
27	Exploration of the environmentally benign and highly effective approach for improving carbon nanotube homogeneity in aqueous system. Journal of Thermal Analysis and Calorimetry, 2016, 124, 815-825.	2.0	6
28	A facile, green fabrication of aqueous nanofluids containing hydrophilic functionalized carbon nanotubes toward improving heat transfer in a closed horizontal flow passage. Powder Technology, 2022, 404, 117451.	2.1	4
29	Effect of various refining processes for Kenaf Bast non-wood pulp fibers suspensions on heat transfer coefficient in circular pipe heat exchanger. Heat and Mass Transfer, 2018, 54, 875-882.	1.2	2