Tilmann Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6348336/publications.pdf Version: 2024-02-01

		61857	28224
109	17,341	43	105
papers	citations	h-index	g-index
121	121	121	13713
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Discovery of gargantulides B and C, new 52-membered macrolactones from <i>Amycolatopsis</i> sp. Complete absolute stereochemistry of the gargantulide family. Organic Chemistry Frontiers, 2022, 9, 462-470.	2.3	4
2	Pangenome analysis of Enterobacteria reveals richness of secondary metabolite gene clusters and their associated gene sets. Synthetic and Systems Biotechnology, 2022, 7, 900-910.	1.8	9
3	BiG-FAM: the biosynthetic gene cluster families database. Nucleic Acids Research, 2021, 49, D490-D497.	6.5	122
4	The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes. Nucleic Acids Research, 2021, 49, D639-D643.	6.5	100
5	Genomic and Chemical Diversity of Bacillus subtilis Secondary Metabolites against Plant Pathogenic Fungi. MSystems, 2021, 6, .	1.7	55
6	Distribution of Îμ-Poly- <scp>l</scp> -Lysine Synthetases in Coryneform Bacteria Isolated from Cheese and Human Skin. Applied and Environmental Microbiology, 2021, 87, .	1.4	9
7	Phylogenetic Distribution of Secondary Metabolites in the Bacillus subtilis Species Complex. MSystems, 2021, 6, .	1.7	39
8	antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Research, 2021, 49, W29-W35.	6.5	1,520
9	Complete Genome Sequence of Streptomyces sp. Strain CA-256286. Microbiology Resource Announcements, 2021, 10, e0029021.	0.3	1
10	Discovery and Characterization of Epemicins A and B, New 30-Membered Macrolides from <i>Kutzneria</i> sp. CA-103260. ACS Chemical Biology, 2021, 16, 1456-1468.	1.6	8
11	Complete Genome Sequence of the Rare Actinobacterium Kutzneria sp. Strain CA-103260. Microbiology Resource Announcements, 2021, 10, e0049921.	0.3	1
12	A Regulator Based "Semi-Targeted―Approach to Activate Silent Biosynthetic Gene Clusters. International Journal of Molecular Sciences, 2021, 22, 7567.	1.8	10
13	The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays in Biochemistry, 2021, 65, 261-275.	2.1	17
14	Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.	13.8	439
15	Complete Genome Sequence of <i>Amycolatopsis</i> sp. CA-230715, Encoding a 35-Module Type I Polyketide Synthase. Microbiology Resource Announcements, 2021, 10, e0080521.	0.3	1
16	Characterization and engineering of Streptomyces griseofuscus DSM 40191 as a potential host for heterologous expression of biosynthetic gene clusters. Scientific Reports, 2021, 11, 18301.	1.6	11
17	Computational Applications in Secondary Metabolite Discovery (CAiSMD): an online workshop. Journal of Cheminformatics, 2021, 13, 64.	2.8	3
18	The Structure of Cyclodecatriene Collinolactone, its Biosynthesis, and Semisynthetic Analogues: Effects of Monoastral Phenotype and Protection from Intracellular Oxidative Stress. Angewandte Chemie - International Edition, 2021, 60, 23212-23216.	7.2	5

#	Article	IF	CITATIONS
19	Die Struktur des Cyclodecatriens Collinolacton, seine Biosynthese und semisynthetische Derivate: monopolare Spindeln und Schutz vor intrazelluläem oxidativem Stress. Angewandte Chemie, 2021, 133, 23399.	1.6	0
20	A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing. Nature Communications, 2021, 12, 5206.	5.8	49
21	Activation and Identification of a Griseusin Cluster in Streptomyces sp. CA-256286 by Employing Transcriptional Regulators and Multi-Omics Methods. Molecules, 2021, 26, 6580.	1.7	9
22	MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Research, 2020, 48, D454-D458.	6.5	351
23	Genome Mining Approaches to Bacterial Natural Product Discovery. , 2020, , 19-33.		5
24	Automating Cloning by Natural Transformation. ACS Synthetic Biology, 2020, 9, 3228-3235.	1.9	11
25	Recent Advances in Re-engineering Modular PKS and NRPS Assembly Lines. Biotechnology and Bioprocess Engineering, 2020, 25, 886-894.	1.4	28
26	ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Research, 2020, 48, W546-W552.	6.5	116
27	Designing sgRNAs for CRISPR-BEST base editing applications with CRISPy-web 2.0. Synthetic and Systems Biotechnology, 2020, 5, 99-102.	1.8	20
28	CRISPR–Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes. Nature Protocols, 2020, 15, 2470-2502.	5.5	50
29	Programmable polyketide biosynthesis platform for production of aromatic compounds in yeast. Synthetic and Systems Biotechnology, 2020, 5, 11-18.	1.8	13
30	Complete Genome Sequences of 13 Bacillus subtilis Soil Isolates for Studying Secondary Metabolite Diversity. Microbiology Resource Announcements, 2020, 9, .	0.3	13
31	High-Quality Sequencing, Assembly, and Annotation of the Streptomyces griseofuscus DSM 40191 Genome. Microbiology Resource Announcements, 2020, 9, .	0.3	9
32	Genome‧cale Metabolic Reconstruction of Actinomycetes for Antibiotics Production. Biotechnology Journal, 2019, 14, e1800377.	1.8	22
33	Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20366-20375.	3.3	119
34	Engineering of cell factories for the production of natural products. Natural Product Reports, 2019, 36, 1231-1232.	5.2	4
35	Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001. Synthetic and Systems Biotechnology, 2019, 4, 142-149.	1.8	46
36	antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research, 2019, 47, W81-W87.	6.5	2,410

#	Article	IF	CITATIONS
37	Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnology Advances, 2019, 37, 107366.	6.0	109
38	Antitumor astins originate from the fungal endophyte <i>Cyanodermella asteris</i> living within the medicinal plant <i>Aster tataricus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26909-26917.	3.3	39
39	CRISPR/Cas-based genome engineering in natural product discovery. Natural Product Reports, 2019, 36, 1262-1280.	5.2	88
40	The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Research, 2019, 47, D625-D630.	6.5	150
41	Sequence-based classification of type II polyketide synthase biosynthetic gene clusters for antiSMASH. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 469-475.	1.4	22
42	Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Briefings in Bioinformatics, 2019, 20, 1103-1113.	3.2	118
43	The Draft Whole-Genome Sequence of the Antibiotic Producer Empedobacter haloabium ATCC 31962 Provides Indications for Its Taxonomic Reclassification. Microbiology Resource Announcements, 2019, 8, .	0.3	4
44	Filling the Gaps in the Kirromycin Biosynthesis: Deciphering the Role of Genes Involved in Ethylmalonyl-CoA Supply and Tailoring Reactions. Scientific Reports, 2018, 8, 3230.	1.6	17
45	Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Current Opinion in Microbiology, 2018, 45, 109-116.	2.3	101
46	Patscanui: an intuitive web interface for searching patterns in DNA and protein data. Nucleic Acids Research, 2018, 46, W205-W208.	6.5	6
47	Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production. Biotechnology Journal, 2018, 13, 1700465.	1.8	32
48	CRISPR-Cas9 Toolkit for Actinomycete Genome Editing. Methods in Molecular Biology, 2018, 1671, 163-184.	0.4	24
49	Lysoquinone-TH1, a New Polyphenolic Tridecaketide Produced by Expressing the Lysolipin Minimal PKS II in Streptomyces albus. Antibiotics, 2018, 7, 53.	1.5	7
50	Polyketide Bioderivatization Using the Promiscuous Acyltransferase KirCll. ACS Synthetic Biology, 2017, 6, 421-427.	1.9	42
51	antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Research, 2017, 45, W36-W41.	6.5	1,196
52	The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Research, 2017, 45, W42-W48.	6.5	142
53	Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nature Communications, 2017, 8, 15784.	5.8	287
54	Recent development of computational resources for new antibiotics discovery. Current Opinion in Microbiology, 2017, 39, 113-120.	2.3	34

#	Article	IF	CITATIONS
55	Linking secondary metabolites to biosynthesis genes in the fungal endophyte Cyanodermella asteris: The anti-cancer bisanthraquinone skyrin. Journal of Biotechnology, 2017, 257, 233-239.	1.9	33
56	The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic Acids Research, 2017, 45, D555-D559.	6.5	207
57	<i>Cyanodermella asteris</i> sp. nov. (<i>Ostropales</i>) from the inflorescence axis of <i> Aster tataricus</i> . Mycotaxon, 2017, 132, 107-123.	0.1	16
58	The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN in <i>Talaromyces islandicus</i> (‴ <i>Penicillium islandicum</i> '). Environmental Microbiology, 2016, 18, 3728-3741.	1.8	15
59	CRISPy-web: An online resource to design sgRNAs for CRISPR applications. Synthetic and Systems Biotechnology, 2016, 1, 118-121.	1.8	117
60	Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites. Natural Product Reports, 2016, 33, 933-941.	5.2	52
61	Introduction to the Special Issue "Bioinformatic tools and approaches for Synthetic Biology of natural products― Synthetic and Systems Biotechnology, 2016, 1, 67-68.	1.8	2
62	The evolution of genome mining in microbes – a review. Natural Product Reports, 2016, 33, 988-1005.	5.2	538
63	Elucidating the molecular physiology of lantibiotic NAI-107 production in Microbispora ATCC-PTA-5024. BMC Genomics, 2016, 17, 42.	1.2	10
64	The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production. Synthetic and Systems Biotechnology, 2016, 1, 69-79.	1.8	153
65	Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer <i>Streptomyces collinus</i> TA¼ 365. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 277-291.	1.4	37
66	Bioinformatics Tools for the Discovery of New Nonribosomal Peptides. Methods in Molecular Biology, 2016, 1401, 209-232.	0.4	8
67	Streptocollin, a Typeâ€IV Lanthipeptide Produced by <i>Streptomyces collinus</i> Tü 365. ChemBioChem, 2015, 16, 2615-2623.	1.3	43
68	antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research, 2015, 43, W237-W243.	6.5	1,764
69	CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. ACS Synthetic Biology, 2015, 4, 1020-1029.	1.9	365
70	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
71	Draft genome sequence of Talaromyces islandicus ("Penicillium islandicumâ€) WF-38-12, a neglected mold with significant biotechnological potential. Journal of Biotechnology, 2015, 211, 101-102.	1.9	17
72	Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends in Biotechnology, 2015, 33, 15-26.	4.9	159

#	Article	IF	CITATIONS
73	CLUSEAN, Overview. , 2015, , 93-95.		0
74	Improved Lanthipeptide Detection and Prediction for antiSMASH. PLoS ONE, 2014, 9, e89420.	1.1	45
75	Novel <i>Amycolatopsis balhimycina</i> biochemical abilities unveiled by proteomics. FEMS Microbiology Letters, 2014, 351, 209-215.	0.7	4
76	Draft Genome Sequence of the <i>Microbispora</i> sp. Strain ATCC-PTA-5024, Producing the Lantibiotic NAI-107. Genome Announcements, 2014, 2, .	0.8	12
77	Reprogramming Acyl Carrier Protein Interactions of an Acyl-CoA Promiscuous trans-Acyltransferase. Chemistry and Biology, 2014, 21, 636-646.	6.2	43
78	In silico tools for the analysis of antibiotic biosynthetic pathways. International Journal of Medical Microbiology, 2014, 304, 230-235.	1.5	84
79	Complete genome sequence of the actinobacterium Amycolatopsis japonica MG417-CF17T (=DSM 44213T) producing (S,S)-N,N′-ethylenediaminedisuccinic acid. Journal of Biotechnology, 2014, 189, 46-47.	1.9	16
80	Biosynthesis of Phenylnannolone A, a Multidrug Resistance Reversal Agent from the Halotolerant Myxobacterium <i>Nannocystis pusilla</i> B150. ChemBioChem, 2014, 15, 757-765.	1.3	19
81	The AT ₂ Domain of KirCl Loads Malonyl Extender Units to the ACPs of the Kirromycin PKS. ChemBioChem, 2013, 14, 1343-1352.	1.3	26
82	Complete genome sequence of the kirromycin producer Streptomyces collinus Tü 365 consisting of a linear chromosome and two linear plasmids. Journal of Biotechnology, 2013, 168, 739-740.	1.9	23
83	antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Research, 2013, 41, W204-W212.	6.5	753
84	Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiology, 2013, 13, 205.	1.3	39
85	Poly Specific <i>trans</i> -Acyltransferase Machinery Revealed <i>via</i> Engineered Acyl-CoA Synthetases. ACS Chemical Biology, 2013, 8, 200-208.	1.6	60
86	Discrete acyltransferases involved in polyketide biosynthesis. MedChemComm, 2012, 3, 871.	3.5	34
87	Genomeâ€scale metabolic representation of <i>Amycolatopsis balhimycina</i> . Biotechnology and Bioengineering, 2012, 109, 1798-1807.	1.7	19
88	Synthetic Biology of secondary metabolite biosynthesis in actinomycetes: Engineering precursor supply as a way to optimize antibiotic production. FEBS Letters, 2012, 586, 2171-2176.	1.3	53
89	antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 2011, 39, W339-W346.	6.5	1,622
90	The phosphopantetheinyl transferase KirP activates the ACP and PCP domains of the kirromycin NRPS/PKS of Streptomyces collinus Tü 365. FEMS Microbiology Letters, 2011, 319, 26-33.	0.7	20

#	Article	IF	CITATIONS
91	Characterization of the †pristinamycin supercluster' of <i>Streptomyces pristinaespiralis</i> . Microbial Biotechnology, 2011, 4, 192-206.	2.0	119
92	Supramolecular Templating in Kirromycin Biosynthesis: The Acyltransferase KirCII Loads Ethylmalonyl-CoA Extender onto a Specific ACP of the trans-AT PKS. Chemistry and Biology, 2011, 18, 438-444.	6.2	50
93	NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Research, 2011, 39, W362-W367.	6.5	559
94	Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. Metabolic Engineering, 2010, 12, 455-461.	3.6	49
95	Making E. coli an Erythromycin Production Plant. Chemistry and Biology, 2010, 17, 1168-1169.	6.2	2
96	Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in <i>Amycolatopsis balhimycina</i> . Proteomics, 2010, 10, 1336-1358.	1.3	28
97	Genome mining in <i>Amycolatopsis balhimycina</i> for ferredoxins capable of supporting cytochrome P450 enzymes involved in glycopeptide antibiotic biosynthesis. FEMS Microbiology Letters, 2010, 306, 45-53.	0.7	4
98	Isolation of the lysolipin gene cluster of Streptomyces tendae Tü 4042. Gene, 2010, 461, 5-14.	1.0	42
99	The kirromycin gene cluster of Streptomyces collinus Tü 365 codes for an aspartate-α-decarboxylase, KirD, which is involved in the biosynthesis of the precursor β-alanine. Journal of Antibiotics, 2009, 62, 465-468.	1.0	15
100	CLUSEAN: A computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. Journal of Biotechnology, 2009, 140, 13-17.	1.9	160
101	Module Extension of a Nonâ€Ribosomal Peptide Synthetase of the Glycopeptide Antibiotic Balhimycin Produced by <i>Amycolatopsis balhimycina</i> . ChemBioChem, 2008, 9, 1195-1200.	1.3	49
102	Molecular Analysis of the Kirromycin Biosynthetic Gene Cluster Revealed β-Alanine as Precursor of the Pyridone Moiety. Chemistry and Biology, 2008, 15, 175-188.	6.2	101
103	Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evolutionary Biology, 2007, 7, 78.	3.2	301
104	Comparative analysis and insights into the evolution of gene clusters for glycopeptide antibiotic biosynthesis. Molecular Genetics and Genomics, 2005, 274, 40-50.	1.0	74
105	Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Research, 2005, 33, 5799-5808.	6.5	388
106	Exploiting the genetic potential of polyketide producing streptomycetes. Journal of Biotechnology, 2003, 106, 221-232.	1.9	127
107	Evidence that an Additional Mutation Is Required To Tolerate Insertional Inactivation of the Streptomyces lividans recA Gene. Journal of Bacteriology, 2001, 183, 4374-4381.	1.0	19
108	Transcriptional and Mutational Analyses of theStreptomyces lividans recX Gene and Its Interference with RecA Activity. Journal of Bacteriology, 2000, 182, 4005-4011.	1.0	59

#	Article	IF	CITATIONS
109	CRISPR/Cas-based genome engineering in natural product discovery. , 0, .		1