
## Jakub Rok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6348297/publications.pdf Version: 2024-02-01



IAKUB ROK

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ciprofloxacin triggers the apoptosis of human triple-negative breast cancer MDA-MB-231 cells via the p53/Bax/Bcl-2 signaling pathway. International Journal of Oncology, 2018, 52, 1727-1737.                                                                     | 1.4 | 45        |
| 2  | Ciprofloxacin-mediated induction of S-phase cell cycle arrest and apoptosis in COLO829 melanoma cells. Pharmacological Reports, 2018, 70, 6-13.                                                                                                                   | 1.5 | 41        |
| 3  | Effect of norfloxacin and moxifloxacin on melanin synthesis and antioxidant enzymes activity in normal human melanocytes. Molecular and Cellular Biochemistry, 2015, 401, 107-114.                                                                                | 1.4 | 31        |
| 4  | Lomefloxacin Induces Oxidative Stress and Apoptosis in COLO829 Melanoma Cells. International<br>Journal of Molecular Sciences, 2017, 18, 2194.                                                                                                                    | 1.8 | 30        |
| 5  | Drug-Induced Photosensitivity—From Light and Chemistry to Biological Reactions and Clinical<br>Symptoms. Pharmaceuticals, 2021, 14, 723.                                                                                                                          | 1.7 | 30        |
| 6  | Moxifloxacin as an inducer of apoptosis in melanoma cells: A study at the cellular and molecular<br>level. Toxicology in Vitro, 2019, 55, 75-92.                                                                                                                  | 1.1 | 24        |
| 7  | Modulation of Melanogenesis and Antioxidant Status of Melanocytes in Response to Phototoxic<br>Action of Doxycycline. Photochemistry and Photobiology, 2015, 91, 1429-1434.                                                                                       | 1.3 | 23        |
| 8  | Effect of tetracycline and UV radiation on melanization and antioxidant status of melanocytes.<br>Journal of Photochemistry and Photobiology B: Biology, 2015, 148, 168-173.                                                                                      | 1.7 | 22        |
| 9  | Vitamin B12 Deficiency Induces Imbalance in Melanocytes Homeostasis—A Cellular Basis of<br>Hypocobalaminemia Pigmentary Manifestations. International Journal of Molecular Sciences, 2018, 19,<br>2845.                                                           | 1.8 | 21        |
| 10 | Chlortetracycline and melanin biopolymer – The risk of accumulation and implications for<br>phototoxicity: An in vitro study on normal human melanocytes. Chemico-Biological Interactions, 2019,<br>303, 27-34.                                                   | 1.7 | 20        |
| 11 | Cytotoxic and proapoptotic effect of doxycycline – An in vitro study on the human skin melanoma cells. Toxicology in Vitro, 2020, 65, 104790.                                                                                                                     | 1.1 | 20        |
| 12 | GSH depletion, mitochondrial membrane breakdown, caspase-3/7 activation and DNA fragmentation in<br>U87MG glioblastoma cells: New insight into the mechanism of cytotoxicity induced by<br>fluoroquinolones. European Journal of Pharmacology, 2018, 835, 94-107. | 1.7 | 18        |
| 13 | UVA radiation augments cytotoxic activity of psoralens in melanoma cells. International Journal of<br>Radiation Biology, 2017, 93, 734-739.                                                                                                                       | 1.0 | 14        |
| 14 | Cellular and Molecular Aspects of Anti-Melanoma Effect of Minocycline—A Study of Cytotoxicity and<br>Apoptosis on Human Melanotic Melanoma Cells. International Journal of Molecular Sciences, 2020, 21,<br>6917.                                                 | 1.8 | 14        |
| 15 | Molecular and Biochemical Basis of Fluoroquinolones-Induced Phototoxicity—The Study of<br>Antioxidant System in Human Melanocytes Exposed to UV-A Radiation. International Journal of<br>Molecular Sciences, 2020, 21, 9714.                                      | 1.8 | 14        |
| 16 | Effect of fluoroquinolones on melanogenesis in normal human melanocytes HEMn-DP: a comparative<br><i>in vitro</i> study. Cutaneous and Ocular Toxicology, 2017, 36, 169-175.                                                                                      | 0.5 | 13        |
| 17 | Phototoxic effect of oxytetracycline on normal human melanocytes. Toxicology in Vitro, 2018, 48, 26-32.                                                                                                                                                           | 1.1 | 13        |
| 18 | Molecular and Biochemical Basis of Minocycline-Induced Hyperpigmentation—The Study on Normal<br>Human Melanocytes Exposed to UVA and UVB Radiation. International Journal of Molecular Sciences,<br>2021, 22, 3755.                                               | 1.8 | 13        |

Јакив Rok

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | EPR spectroscopy of chlorpromazine-induced free radical formation in normal human melanocytes.<br>European Biophysics Journal, 2015, 44, 359-365.                                                                                                   | 1.2 | 12        |
| 20 | The role of MITF and Mcl-1 proteins in the antiproliferative and proapoptotic effect of ciprofloxacin in amelanotic melanoma cells: In silico and in vitro study. Toxicology in Vitro, 2020, 66, 104884.                                            | 1.1 | 11        |
| 21 | Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes. Environmental<br>Research, 2014, 134, 309-314.                                                                                                                   | 3.7 | 10        |
| 22 | MIM1, the Mcl-1 – specific BH3 mimetic induces apoptosis in human U87MG glioblastoma cells.<br>Toxicology in Vitro, 2018, 53, 126-135.                                                                                                              | 1.1 | 9         |
| 23 | Cobalamin Deficiency: Effect on Homeostasis of Cultured Human Astrocytes. Cells, 2019, 8, 1505.                                                                                                                                                     | 1.8 | 9         |
| 24 | MIM1 induces COLO829 melanoma cell death through mitochondrial membrane breakdown, GSH depletion, and DNA damage. Fundamental and Clinical Pharmacology, 2020, 34, 20-31.                                                                           | 1.0 | 9         |
| 25 | PARP1 as a Marker of an Aggressive Clinical Phenotype in Cutaneous Melanoma—A Clinical and an In<br>Vitro Study. Cells, 2021, 10, 286.                                                                                                              | 1.8 | 9         |
| 26 | Mcl-1 Inhibitor Induces Cells Death in BRAF-Mutant Amelanotic Melanoma Trough GSH Depletion, DNA<br>Damage and Cell Cycle Changes. Pathology and Oncology Research, 2020, 26, 1465-1474.                                                            | 0.9 | 8         |
| 27 | Minocycline Impact on Redox Homeostasis of Normal Human Melanocytes HEMn-LP Exposed to UVA<br>Radiation and Hydrogen Peroxide. International Journal of Molecular Sciences, 2021, 22, 1642.                                                         | 1.8 | 8         |
| 28 | The role of UVA radiation in ketoprofen-mediated BRAF-mutant amelanotic melanoma cells death – A<br>study at the cellular and molecular level. Toxicology in Vitro, 2021, 72, 105108.                                                               | 1.1 | 8         |
| 29 | Mechanism of Anticancer Action of Novel Imidazole Platinum(II) Complex Conjugated with G2<br>PAMAM-OH Dendrimer in Breast Cancer Cells. International Journal of Molecular Sciences, 2021, 22,<br>5581.                                             | 1.8 | 8         |
| 30 | The effect of simultaneous exposure of HEMn-DP and HEMn-LP melanocytes to nicotine and<br>UV-radiation on the cell viability and melanogenesis. Environmental Research, 2016, 151, 44-49.                                                           | 3.7 | 7         |
| 31 | Astrogliosis in an Experimental Model of Hypovitaminosis B12: A Cellular Basis of Neurological<br>Disorders due to Cobalamin Deficiency. Cells, 2020, 9, 2261.                                                                                      | 1.8 | 7         |
| 32 | The Anticancer Potential of Doxycycline and Minocycline—A Comparative Study on Amelanotic<br>Melanoma Cell Lines. International Journal of Molecular Sciences, 2022, 23, 831.                                                                       | 1.8 | 7         |
| 33 | Neobavaisoflavone May Modulate the Activity of Topoisomerase Inhibitors towards U-87 MG Cells: An<br>In Vitro Study. Molecules, 2021, 26, 4516.                                                                                                     | 1.7 | 5         |
| 34 | Chemosensitization of U-87 MG Glioblastoma Cells by Neobavaisoflavone towards Doxorubicin and Etoposide. International Journal of Molecular Sciences, 2022, 23, 5621.                                                                               | 1.8 | 5         |
| 35 | Changes in the Oxidation-Reduction State of Human Dermal Fibroblasts as an Effect of Lomefloxacin<br>Phototoxic Action. Cells, 2022, 11, 1971.                                                                                                      | 1.8 | 5         |
| 36 | UVA Radiation Enhances Lomefloxacin-Mediated Cytotoxic, Growth-Inhibitory and Pro-Apoptotic<br>Effect in Human Melanoma Cells through Excessive Reactive Oxygen Species Generation. International<br>Journal of Molecular Sciences, 2020, 21, 8937. | 1.8 | 4         |

Јакив Rok

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Response of Human Glioblastoma Cells to Vitamin B12 Deficiency: A Study Using the Non-Toxic<br>Cobalamin Antagonist. Biology, 2021, 10, 69.                                                                                          | 1.3 | 4         |
| 38 | The Biochemical and Molecular Analysis of Changes in Melanogenesis Induced by UVA-Activated<br>Fluoroquinolones—In Vitro Study on Human Normal Melanocytes. Cells, 2021, 10, 2900.                                                   | 1.8 | 4         |
| 39 | Ketoprofen Combined with UVA Irradiation Exerts Higher Selectivity in the Mode of Action against<br>Melanotic Melanoma Cells than against Normal Human Melanocytes. International Journal of<br>Molecular Sciences, 2021, 22, 11966. | 1.8 | 2         |
| 40 | The Assessment of Meloxicam Phototoxicity in Human Normal Skin Cells: In Vitro Studies on Dermal<br>Fibroblasts and Epidermal Melanocytes. Molecules, 2022, 27, 4215.                                                                | 1.7 | 2         |