Jukka A Ketoja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6348293/publications.pdf

Version: 2024-02-01

		471061	500791
56	980	17	28
papers	citations	h-index	g-index
56	56	56	816
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Foam forming of fiber products: a review. Journal of Dispersion Science and Technology, 2022, 43, 1462-1497.	1.3	25
2	Nanoscale Mechanism of Moisture-Induced Swelling in Wood Microfibril Bundles. Nano Letters, 2022, 22, 5143-5150.	4.5	19
3	Combining scattering analysis and atomistic simulation of wood-water interactions. Carbohydrate Polymers, 2021, 251, 117064.	5.1	11
4	Analysis of the foam-forming of non-woven lightweight fibrous materials using X-ray tomography. SN Applied Sciences, 2021, 3, 192.	1.5	8
5	Lignin Inter-Diffusion Underlying Improved Mechanical Performance of Hot-Pressed Paper Webs. Polymers, 2021, 13, 2485.	2.0	9
6	Bubble Attachment to Cellulose and Silica Surfaces of Varied Surface Energies: Wetting Transition and Implications in Foam Forming. Langmuir, 2020, 36, 7296-7308.	1.6	13
7	Crossover from mean-field compression to collective phenomena in low-density foam-formed fiber material. Soft Matter, 2020, 16, 6819-6825.	1.2	7
8	On the strength improvement of lightweight fibre networks by polymers, fibrils and fines. Cellulose, 2020, 27, 6961-6976.	2.4	23
9	High Internal Phase Oil-in-Water Pickering Emulsions Stabilized by Chitin Nanofibrils: 3D Structuring and Solid Foamâ€ ⁻ . ACS Applied Materials & Interfaces, 2020, 12, 11240-11251.	4.0	118
10	How Cellulose Nanofibrils Affect Bulk, Surface, and Foam Properties of Anionic Surfactant Solutions. Biomacromolecules, 2019, 20, 4361-4369.	2.6	36
11	Chirality and bound water in the hierarchical cellulose structure. Cellulose, 2019, 26, 5877-5892.	2.4	55
12	Compression Strength Mechanisms of Low-Density Fibrous Materials. Materials, 2019, 12, 384.	1.3	18
13	Versatile templates from cellulose nanofibrils for photosynthetic microbial biofuel production. Journal of Materials Chemistry A, 2018, 6, 5825-5835.	5.2	34
14	Density development in foam forming: wet pressing dynamics. Nordic Pulp and Paper Research Journal, 2018, 33, 226-236.	0.3	5
15	Improving Compression Recovery of Foam-formed Fiber Materials. BioResources, 2018, 13, .	0.5	16
16	Structural properties and foaming of plant cell wall polysaccharide dispersions. Carbohydrate Polymers, 2017, 173, 508-518.	5.1	7
17	Design-driven integrated development of technical and perceptual qualities in foam-formed cellulose fibre materials. Cellulose, 2017, 24, 5053-5068.	2.4	15
18	Atomistic molecular dynamics simulations on the interaction of TEMPO-oxidized cellulose nanofibrils in water. Cellulose, 2016, 23, 3449-3462.	2.4	22

#	Article	IF	CITATIONS
19	Novel Test Approach for Evaluating and Modelling Barrier Properties of Food Contact Materials Against Mineral Oil Contaminants. Packaging Technology and Science, 2016, 29, 571-583.	1.3	10
20	Porous structure of fibre networks formed by a foaming process: a comparative study of different characterization techniques. Journal of Microscopy, 2016, 264, 88-101.	0.8	12
21	A unique microstructure of the fiber networks deposited from foam–fiber suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 544-553.	2.3	40
22	Response of wet foam to fibre mixing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 467, 97-106.	2.3	18
23	Drying of Pigment-Cellulose Nanofibril Substrates. Materials, 2014, 7, 6893-6907.	1.3	8
24	Filler-nanocellulose substrate for printed electronics: experiments and model approach to structure and conductivity. Cellulose, 2013, 20, 1413-1424.	2.4	39
25	Bubble size and air content of wet fibre foams in axial mixing with macro-instabilities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 1130-1139.	2.3	40
26	Exceptional pore size distribution in foam-formed fibre networks. Nordic Pulp and Paper Research Journal, 2012, 27, 226-230.	0.3	27
27	Mechanical properties of cellulose nanofibrils determined through atomistic molecular dynamics simulations. Nordic Pulp and Paper Research Journal, 2012, 27, 282-286.	0.3	27
28	Printing: The role of binder type in determining inkjet print quality. Nordic Pulp and Paper Research Journal, 2010, 25, 380-390.	0.3	21
29	Simulation of triaxial deformation of wet fiber networks. Nordic Pulp and Paper Research Journal, 2008, 23, 264-271.	0.3	1
30	Simulated structure of wet fiber networks. Nordic Pulp and Paper Research Journal, 2007, 22, 516-522.	0.3	2
31	Theoretical and Experimental Study on Phase Transitions and Mass Fluxes of Supersaturated Water Vapor onto Different Insoluble Flat Surfaces. Langmuir, 2006, 22, 10061-10065.	1.6	9
32	Diffusion of volatile compounds in fibre networks: experiments and modelling by random walk simulation. Food Additives and Contaminants, 2002, 19, 56-62.	2.0	17
33	Correlated disorder and propagating modes in the Frenkel-Kontorova model. Physical Review B, 1999, 59, 9174-9184.	1.1	6
34	Localization and fluctuations in quantum kicked rotors. Physical Review E, 1999, 60, 453-458.	0.8	6
35	Heat transfer to paper in a hot nip. Nordic Pulp and Paper Research Journal, 1999, 14, 273-278.	0.3	6
36	The re-entrant phase diagram of the generalized Harper equation. Journal of Physics Condensed Matter, 1997, 9, 1123-1132.	0.7	5

#	Article	IF	CITATIONS
37	Fractal characteristics of critical and localized states in incommensurate quantum systems. Pramana - Journal of Physics, 1997, 48, 589-601.	0.9	О
38	"Critical―phonons of the supercritical Frenkel-Kontorova model: Renormalization bifurcation diagrams. Physica D: Nonlinear Phenomena, 1997, 104, 239-252.	1.3	4
39	Harper equation, the dissipative standard map and strange nonchaotic attractors: Relationship between an eigenvalue problem and iterated maps. Physica D: Nonlinear Phenomena, 1997, 109, 70-80.	1.3	52
40	Renormalization approach to quasiperiodic quantum spin chains. Physica A: Statistical Mechanics and Its Applications, 1995, 219, 212-233.	1.2	11
41	Decimation studies of Bloch electrons in a magnetic field: Higher-order limit cycles underlying the phase diagram. Physical Review B, 1995, 52, 3026-3029.	1.1	7
42	Self-Similarity and Localization. Physical Review Letters, 1995, 75, 2762-2765.	2.9	40
43	Quantum spin chains in aperiodic magnetic fields. Physica Scripta, 1995, 52, 614-623.	1.2	1
44	Binary tree approach to scaling in unimodal maps. Journal of Statistical Physics, 1994, 75, 643-668.	0.5	2
45	Rotationally-ordered periodic orbits for multiharmonic area-preserving twist maps. Physica D: Nonlinear Phenomena, 1994, 73, 388-398.	1.3	6
46	Renormalization approach to quasiperiodic tight binding models. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 194, 64-70.	0.9	13
47	Renormalization approach to quasiperiodic tight binding models. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 194, 64-70.	0.9	1
48	Universal criterion for the breakup of invariant tori in dissipative systems. Physical Review Letters, 1992, 69, 2180-2183.	2.9	16
49	Renormalisation in a circle map with two inflection points. Physica D: Nonlinear Phenomena, 1992, 55, 45-68.	1.3	6
50	Breakup of Kolmogorov-Arnol'd-Moser tori of arbitrary frequency in a two-parameter system. Physical Review A, 1990, 42, 775-780.	1.0	7
51	Fractal boundary for the existence of invariant circles for area-preserving maps: Observations and renormalisation explanation. Physica D: Nonlinear Phenomena, 1989, 35, 318-334.	1.3	35
52	Fibonacci bifurcation sequences and the Cvitanović-Feigenbaum functional equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 138, 488-492.	0.9	6
53	Reply to â€~â€~Noise effect on instabilities and chaotic solutions of a superconducting interferometer.''. Physical Review B, 1987, 35, 404-405.	1.1	4
54	Universality of the window structure and the density of aperiodic solutions in dissipative dynamical systems. Physical Review A, 1986, 33, 2846-2849.	1.0	5

#	Article	IF	CITATIONS
55	Instabilities and chaotic solutions of the current biased dc superconducting quantum interference device. Physical Review B, 1984, 30, 3757-3764.	1.1	24
56	Tangential bifurcation and critical indices in a Josephson junction. Physics Letters, Section A: General, Atomic and Solid State Physics, 1984, 105, 425-428.	0.9	5