
Miquel costas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/634826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative Câ^'F Cleavage in Metalloenzymes and Model Compounds. European Journal of Inorganic Chemistry, 2022, 2022, e202100754.	1.0	5
2	Remote Amino Acid Recognition Enables Effective Hydrogen Peroxide Activation at a Manganese Oxidation Catalyst. Angewandte Chemie, 2022, 134, .	1.6	1
3	Remote Amino Acid Recognition Enables Effective Hydrogen Peroxide Activation at a Manganese Oxidation Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
4	Resolving Oxygenation Pathways in Manganese-Catalyzed C(sp ³)–H Functionalization via Radical and Cationic Intermediates. Journal of the American Chemical Society, 2022, 144, 7391-7401.	6.6	16
5	General Access to Modified αâ€Amino Acids by Bioinspired Stereoselective γ â^'H Bond Lactonization. Angewandte Chemie - International Edition, 2021, 60, 4740-4746.	7.2	31
6	General Access to Modified αâ€Amino Acids by Bioinspired Stereoselective γ â^'H Bond Lactonization. Angewandte Chemie, 2021, 133, 4790-4796.	1.6	8
7	Spin State Tunes Oxygen Atom Transfer towards Fe IV O Formation in Fe II Complexes. Chemistry - A European Journal, 2021, 27, 4946-4954.	1.7	1
8	Electrocatalytic Water Oxidation with α-[Fe(mcp)(OTf) ₂] and Analogues. ACS Catalysis, 2021, 11, 2583-2595.	5.5	13
9	Aromatic Câ [~] 'H Hydroxylation Reactions with Hydrogen Peroxide Catalyzed by Bulky Manganese Complexes. Advanced Synthesis and Catalysis, 2021, 363, 3783-3795.	2.1	27
10	Site and Enantioselective Aliphatic Câ^'H Oxidation with Bioinspired Chiral Complexes. Chemical Record, 2021, 21, 4000-4014.	2.9	27
11	Supramolecular Fullerene Sponges as Catalytic Masks for Regioselective Functionalization of C60. CheM, 2020, 6, 169-186.	5.8	65
12	Enantioselective C–H Lactonization of Unactivated Methylenes Directed by Carboxylic Acids. Journal of the American Chemical Society, 2020, 142, 1584-1593.	6.6	63
13	Catalytic O ₂ activation with synthetic models of α-ketoglutarate dependent oxygenases. Chemical Communications, 2020, 56, 14369-14372.	2.2	5
14	Iron atalyzed Intermolecular Functionalization of Nonâ€Activated Aliphatic Câ^'H Bonds <i>via</i> Carbene Transfer. Advanced Synthesis and Catalysis, 2020, 362, 5116-5123.	2.1	5
15	Complete Dynamic Reconstruction of C ₆₀ , C ₇₀ , and (C ₅₉ N) ₂ Encapsulation into an Adaptable Supramolecular Nanocapsule. Journal of the American Chemical Society, 2020, 142, 16051-16063.	6.6	36
16	Mechanistic Insights into the <i>ortho</i> -Defluorination-Hydroxylation of 2-Halophenolates Promoted by a Bis(1¼-oxo)dicopper(III) Complex. Inorganic Chemistry, 2020, 59, 17018-17027.	1.9	8
17	Predictable Selectivity in Remote Câ^'H Oxidation of Steroids: Analysis of Substrate Binding Mode. Angewandte Chemie, 2020, 132, 12803-12808.	1.6	6
18	Oxoiron(V) Complexes of Relevance in Oxidation Catalysis of Organic Substrates. Israel Journal of Chemistry, 2020, 60, 1004-1018	1.0	21

#	Article	IF	CITATIONS
19	Site-Selective and Product Chemoselective Aliphatic C–H Bond Hydroxylation of Polyhydroxylated Substrates. ACS Catalysis, 2020, 10, 4702-4709.	5.5	40
20	Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catalysis, 2020, 10, 8611-8631.	5.5	115
21	Predictable Selectivity in Remote Câ^'H Oxidation of Steroids: Analysis of Substrate Binding Mode. Angewandte Chemie - International Edition, 2020, 59, 12703-12708.	7.2	33
22	Octahedral iron(<scp>iv</scp>)–tosylimido complexes exhibiting single electron-oxidation reactivity. Chemical Science, 2019, 10, 9513-9529.	3.7	23
23	Chemoselectivity in the Oxidation of Cycloalkenes with a Non-Heme Iron(IV)-Oxo-Chloride Complex: Epoxidation vs. Hydroxylation Selectivity. Journal of the American Society for Mass Spectrometry, 2019, 30, 1923-1933.	1.2	9
24	Electrophilic Iron Catalyst Paired with a Lithium Cation Enables Selective Functionalization of Nonâ€Activated Aliphatic Câ^'H Bonds via Metallocarbene Intermediates. Angewandte Chemie, 2019, 131, 14042-14049.	1.6	2
25	Electrophilic Iron Catalyst Paired with a Lithium Cation Enables Selective Functionalization of Nonâ€Activated Aliphatic Câ^H Bonds via Metallocarbene Intermediates. Angewandte Chemie - International Edition, 2019, 58, 13904-13911.	7.2	23
26	Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same Ancillary Ligand. Journal of the American Chemical Society, 2019, 141, 15078-15091.	6.6	48
27	Enzyme-like substrate-selectivity in C–H oxidation enabled by recognition. Chemical Communications, 2019, 55, 917-920.	2.2	39
28	Hydrogen sulfide impacts on inflammation-induced adipocyte dysfunction. Food and Chemical Toxicology, 2019, 131, 110543.	1.8	12
29	Mâ^'O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)â€Oxyl and Cobalt(III)â€Oxo Complexes. Angewandte Chemie, 2019, 131, 9721-9726.	1.6	13
30	Mâ^'O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)â€Oxyl and Cobalt(III)â€Oxo Complexes. Angewandte Chemie - International Edition, 2019, 58, 9619-9624.	7.2	56
31	Water oxidation catalysis with well-defined molecular iron complexes. Advances in Inorganic Chemistry, 2019, 74, 151-196.	0.4	9
32	Enantioselective Epoxidation of β,β-Disubstituted Enamides with a Manganese Catalyst and Aqueous Hydrogen Peroxide. Organic Letters, 2019, 21, 2430-2435.	2.4	18
33	Water oxidation at base metal molecular catalysts. Advances in Organometallic Chemistry, 2019, , 1-52.	0.5	10
34	Highly enantioselective epoxidation of olefins by H ₂ O ₂ catalyzed by a non-heme Fe(<scp>ii</scp>) catalyst of a chiral tetradentate ligand. Dalton Transactions, 2019, 48, 6123-6131.	1.6	19
35	Characterized cis-FeV(O)(OH) intermediate mimics enzymatic oxidations in the gas phase. Nature Communications, 2019, 10, 901.	5.8	48
36	Effective Tetradentate Compound Complexes against Leishmania spp. that Act on Critical Enzymatic Pathways of These Parasites. Molecules, 2019, 24, 134.	1.7	4

#	Article	IF	CITATIONS
37	Size-selective encapsulation of C ₆₀ and C ₆₀ -derivatives within an adaptable naphthalene-based tetragonal prismatic supramolecular nanocapsule. Chemical Communications, 2019, 55, 798-801.	2.2	27
38	Design of Iron Coordination Complexes as Highly Active Homogenous Water Oxidation Catalysts by Deuteration of Oxidation-Sensitive Sites. Journal of the American Chemical Society, 2019, 141, 323-333.	6.6	55
39	Asymmetric Epoxidation Catalyzed by Biologically Inspired Non-heme Iron Catalysts and Hydrogen Peroxide. Green Chemistry and Sustainable Technology, 2019, , 161-197.	0.4	Ο
40	Spectroscopic and DFT Characterization of a Highly Reactive Nonheme Fe ^V –Oxo Intermediate. Journal of the American Chemical Society, 2018, 140, 3916-3928.	6.6	86
41	Aliphatic C–H Bond Oxidation with Hydrogen Peroxide Catalyzed by Manganese Complexes: Directing Selectivity through Torsional Effects. Organic Letters, 2018, 20, 2720-2723.	2.4	29
42	Frontispiece: Controlling Selectivity in Aliphatic Câ^'H Oxidation through Supramolecular Recognition. Chemistry - A European Journal, 2018, 24, .	1.7	0
43	Selfâ€Assembled Cofacial Zinc–Porphyrin Supramolecular Nanocapsules as Tuneable ¹ O ₂ Photosensitizers. Chemistry - A European Journal, 2018, 24, 4371-4381.	1.7	28
44	Controlling Selectivity in Aliphatic Câ`'H Oxidation through Supramolecular Recognition. Chemistry - A European Journal, 2018, 24, 5042-5054.	1.7	58
45	Design of Zn-, Cu-, and Fe-Coordination Complexes Confined in a Self-Assembled Nanocage. Inorganic Chemistry, 2018, 57, 3529-3539.	1.9	23
46	Biologically inspired oxidation catalysis using metallopeptides. Dalton Transactions, 2018, 47, 1755-1763.	1.6	17
47	Detection of Indistinct Feâ î'N Stretching Bands in Iron(V) Nitrides by Photodissociation Spectroscopy. Chemistry - A European Journal, 2018, 24, 5078-5081.	1.7	18
48	Bioinspired Electroâ€Organocatalytic Material Efficient for Hydrogen Production. Chemistry - A European Journal, 2018, 24, 3305-3313.	1.7	6
49	Mechanism of the Selective Fe-Catalyzed Arene Carbon–Hydrogen Bond Functionalization. ACS Catalysis, 2018, 8, 4313-4322.	5.5	32
50	A Deep Cavitand Receptor Functionalized with Fe(II) and Mn(II) Aminopyridine Complexes for Bioinspired Oxidation Catalysis. ACS Catalysis, 2018, 8, 3667-3672.	5.5	19
51	Preparation of a coordinatively saturated μ-η2:η2-peroxodicopper(II) compound. Inorganica Chimica Acta, 2018, 481, 166-170.	1.2	4
52	Acid‶riggered Oâ^'O Bond Heterolysis of a Nonheme Fe ^{III} (OOH) Species for the Stereospecific Hydroxylation of Strong Câ^'H Bonds. Chemistry - A European Journal, 2018, 24, 5331-5340.	1.7	43
53	Uncovering the Complexity of the Simplest Atom Transfer Reaction. Accounts of Chemical Research, 2018, 51, 2601-2602.	7.6	11
54	Trapping Iron(III)–Oxo Species at the Boundary of the "Oxo Wall― Insights into the Nature of the Fe(III)–O Bond. Journal of the American Chemical Society, 2018, 140, 14391-14400.	6.6	47

#	Article	IF	CITATIONS
55	Greening Oxidation Catalysis: Iron Catalyzed Alkene <i>syn</i> -Dihydroxylation with Aqueous Hydrogen Peroxide in Green Solvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 8410-8416.	3.2	29
56	The Quest for Selectivity in Hydrogen Atom Transfer Based Aliphatic C–H Bond Oxygenation. Accounts of Chemical Research, 2018, 51, 1984-1995.	7.6	122
57	Enantioselective aliphatic C–H bond oxidation catalyzed by bioinspired complexes. Chemical Communications, 2018, 54, 9559-9570.	2.2	69
58	Tetradentate polyamines as efficient metallodrugs for Chagas disease treatment in murine model. Journal of Chemotherapy, 2017, 29, 83-93.	0.7	5
59	Reversible C ₆₀ Ejection from a Metallocage through the Redoxâ€Dependent Binding of a Competitive Guest. Chemistry - A European Journal, 2017, 23, 3016-3022.	1.7	36
60	Oxidation of alkane and alkene moieties with biologically inspired nonheme iron catalysts and hydrogen peroxide: from free radicals to stereoselective transformations. Journal of Biological Inorganic Chemistry, 2017, 22, 425-452.	1.1	153
61	Chasing the Evasive Feâ•O Stretch and the Spin State of the Iron(IV)–Oxo Complexes by Photodissociation Spectroscopy. Journal of the American Chemical Society, 2017, 139, 2757-2765.	6.6	45
62	A Copperâ€based Supramolecular Nanocapsule that Enables Straightforward Purification of Sc ₃ Nâ€based Endohedral Metallofullerene Soots. Chemistry - A European Journal, 2017, 23, 3553-3557.	1.7	19
63	Highly Enantioselective Oxidation of Nonactivated Aliphatic C–H Bonds with Hydrogen Peroxide Catalyzed by Manganese Complexes. ACS Central Science, 2017, 3, 196-204.	5.3	148
64	A bottom up approach towards artificial oxygenases by combining iron coordination complexes and peptides. Chemical Science, 2017, 8, 3660-3667.	3.7	30
65	O–O Bond Activation in Cu- and Fe-Based Coordination Complexes: Breaking It Makes the Difference. Advances in Inorganic Chemistry, 2017, , 63-105.	0.4	2
66	Generation, Spectroscopic, and Chemical Characterization of an Octahedral Iron(V)-Nitrido Species with a Neutral Ligand Platform. Journal of the American Chemical Society, 2017, 139, 9168-9177.	6.6	42
67	Nonclassical Single-State Reactivity of an Oxo-Iron(IV) Complex Confined to Triplet Pathways. Journal of the American Chemical Society, 2017, 139, 8939-8949.	6.6	87
68	Nonâ€Heme Iron Catalysts with a Rigid Bisâ€Isoindoline Backbone and Their Use in Selective Aliphatic Câ^'H Oxidation. Advanced Synthesis and Catalysis, 2017, 359, 2590-2595.	2.1	24
69	Evidence of a Sole Oxygen Atom Transfer Agent in Asymmetric Epoxidations with Fe-pdp Catalysts. ACS Catalysis, 2017, 7, 5046-5053.	5.5	34
70	Supramolecular Recognition Allows Remote, Site‧elective Câ^'H Oxidation of Methylenic Sites in Linear Amines. Angewandte Chemie - International Edition, 2017, 56, 16347-16351.	7.2	85
71	Supramolecular Recognition Allows Remote, Site‧elective Câ^'H Oxidation of Methylenic Sites in Linear Amines. Angewandte Chemie, 2017, 129, 16565-16569.	1.6	29
72	Spin‣tateâ€Controlled Photodissociation of Iron(III) Azide to an Iron(V) Nitride Complex. Angewandte Chemie - International Edition, 2017, 56, 14057-14060.	7.2	17

#	Article	IF	CITATIONS
73	Tuning Selectivity in Aliphatic C–H Bond Oxidation of <i>N</i> -Alkylamides and Phthalimides Catalyzed by Manganese Complexes. ACS Catalysis, 2017, 7, 5903-5911.	5.5	50
74	Mechanistically Driven Development of an Iron Catalyst for Selective <i>Syn</i> -Dihydroxylation of Alkenes with Aqueous Hydrogen Peroxide. Journal of the American Chemical Society, 2017, 139, 12821-12829.	6.6	49
75	Chemoselective Aliphatic C–H Bond Oxidation Enabled by Polarity Reversal. ACS Central Science, 2017, 3, 1350-1358.	5.3	121
76	Spinâ€Stateâ€Controlled Photodissociation of Iron(III) Azide to an Iron(V) Nitride Complex. Angewandte Chemie, 2017, 129, 14245-14248.	1.6	7
77	Electronic and Torsional Effects on Hydrogen Atom Transfer from Aliphatic C–H Bonds: A Kinetic Evaluation via Reaction with the Cumyloxyl Radical. Journal of Organic Chemistry, 2017, 82, 13542-13549.	1.7	12
78	Catalytic C-H oxidations by nonheme mononuclear Fe(II) complexes of two pentadentate ligands: Evidence for an Fe(IV) oxo intermediate. Journal of Molecular Catalysis A, 2017, 426, 350-356.	4.8	27
79	Making and breaking of the O O bond at iron complexes. Coordination Chemistry Reviews, 2017, 334, 2-24.	9.5	66
80	Spectroscopic, Electrochemical and Computational Characterisation of Ru Species Involved in Catalytic Water Oxidation: Evidence for a [Ru ^V (O)(Py ₂ ^{Me} tacn)] Intermediate. Chemistry - A European Journal, 2016, 22, 10111-10126.	1.7	21
81	Readily Accessible Bulky Iron Catalysts exhibiting Site Selectivity in the Oxidation of Steroidal Substrates. Angewandte Chemie - International Edition, 2016, 55, 5776-5779.	7.2	90
82	Iron and Manganese Catalysts for the Selective Functionalization of Arene C(sp ²)â^'H Bonds by Carbene Insertion. Angewandte Chemie - International Edition, 2016, 55, 6530-6534.	7.2	77
83	Readily Accessible Bulky Iron Catalysts exhibiting Site Selectivity in the Oxidation of Steroidal Substrates. Angewandte Chemie, 2016, 128, 5870-5873.	1.6	67
84	Iron and Manganese Catalysts for the Selective Functionalization of Arene C(sp ²)â^'H Bonds by Carbene Insertion. Angewandte Chemie, 2016, 128, 6640-6644.	1.6	29
85	Peptide-mediated vectorization of metal complexes: conjugation strategies and biomedical applications. Dalton Transactions, 2016, 45, 12970-12982.	1.6	37
86	Spectroscopic Characterization and Reactivity of Triplet and Quintet Iron(IV) Oxo Complexes in the Gas Phase. Angewandte Chemie, 2016, 128, 3701-3705.	1.6	24
87	Innentitelbild: Spectroscopic Characterization and Reactivity of Triplet and Quintet Iron(IV) Oxo Complexes in the Gas Phase (Angew. Chem. 11/2016). Angewandte Chemie, 2016, 128, 3578-3578.	1.6	0
88	Spectroscopic Characterization and Reactivity of Triplet and Quintet Iron(IV) Oxo Complexes in the Gas Phase. Angewandte Chemie - International Edition, 2016, 55, 3637-3641.	7.2	44
89	Delivering aminopyridine ligands into cancer cells through conjugation to the cell-penetrating peptide BP16. Organic and Biomolecular Chemistry, 2016, 14, 4061-4070.	1.5	9
90	Biologically Inspired Câ^'H and C=C Oxidations with Hydrogen Peroxide Catalyzed by Iron Coordination Complexes. Chemistry - an Asian Journal, 2016, 11, 3148-3158.	1.7	74

#	Article	IF	CITATIONS
91	Water oxidation: High five iron. Nature Energy, 2016, 1, .	19.8	7
92	Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species. Angewandte Chemie, 2016, 128, 6418-6422.	1.6	19
93	Oxygen Atom Exchange between H ₂ O and Non-Heme Oxoiron(IV) Complexes: Ligand Dependence and Mechanism. Inorganic Chemistry, 2016, 55, 5818-5827.	1.9	40
94	Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species. Angewandte Chemie - International Edition, 2016, 55, 6310-6314.	7.2	61
95	Iron Catalyzed Highly Enantioselective Epoxidation of Cyclic Aliphatic Enones with Aqueous H ₂ O ₂ . Journal of the American Chemical Society, 2016, 138, 2732-2738.	6.6	95
96	InÂvitro and inÂvivo identification of tetradentated polyamine complexes as highly efficient metallodrugs against Trypanosoma cruzi. Experimental Parasitology, 2016, 164, 20-30.	0.5	14
97	Metallosupramolecular receptors for fullerene binding and release. Chemical Society Reviews, 2016, 45, 40-62.	18.7	133
98	Pro-Oxidant Activity of Amine-Pyridine-Based Iron Complexes Efficiently Kills Cancer and Cancer Stem-Like Cells. PLoS ONE, 2015, 10, e0137800.	1.1	28
99	Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates. Angewandte Chemie, 2015, 127, 4431-4435.	1.6	13
100	Synergistic Interplay of a Nonâ€Heme Iron Catalyst and Amino Acid Coligands in H ₂ O ₂ Activation for Asymmetric Epoxidation of αâ€Alkylâ€Substituted Styrenes. Angewandte Chemie, 2015, 127, 2767-2771.	1.6	25
101	Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates. Angewandte Chemie - International Edition, 2015, 54, 4357-4361.	7.2	38
102	Enantioselective Hydroformylation by a Rh-Catalyst Entrapped in a Supramolecular Metallocage. Journal of the American Chemical Society, 2015, 137, 2680-2687.	6.6	175
103	Enzyme-triggered delivery of chlorambucil from conjugates based on the cell-penetrating peptide BP16. Organic and Biomolecular Chemistry, 2015, 13, 1470-1480.	1.5	16
104	Evidence for an oxygen evolving iron–oxo–cerium intermediate in iron-catalysed water oxidation. Nature Communications, 2015, 6, 5865.	5.8	136
105	Synergistic Interplay of a Nonâ€Heme Iron Catalyst and Amino Acid Coligands in H ₂ O ₂ Activation for Asymmetric Epoxidation of αâ€Alkylâ€Substituted Styrenes. Angewandte Chemie - International Edition, 2015, 54, 2729-2733.	7.2	79
106	Structural and Reactivity Models for Copper Oxygenases: Cooperative Effects and Novel Reactivities. Accounts of Chemical Research, 2015, 48, 2397-2406.	7.6	109
107	Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions. Inorganic Chemistry, 2015, 54, 7152-7164.	1.9	63
108	Design, Preparation, and Characterization of Zn and Cu Metallopeptides Based On Tetradentate Aminopyridine Ligands Showing Enhanced DNA Cleavage Activity. Inorganic Chemistry, 2015, 54, 10542-10558.	1.9	25

#	Article	IF	CITATIONS
109	Spectroscopic Analyses on Reaction Intermediates Formed during Chlorination of Alkanes with NaOCl Catalyzed by a Nickel Complex. Inorganic Chemistry, 2015, 54, 10656-10666.	1.9	23
110	Biologically inspired non-heme iron-catalysts for asymmetric epoxidation; design principles and perspectives. Chemical Communications, 2015, 51, 14285-14298.	2.2	133
111	H ₂ oxidation versus organic substrate oxidation in non-heme iron mediated reactions with H ₂ O ₂ . Chemical Communications, 2015, 51, 14992-14995.	2.2	4
112	C–H Bond Oxidation Catalyzed by an Imine-Based Iron Complex: A Mechanistic Insight. Inorganic Chemistry, 2015, 54, 10141-10152.	1.9	36
113	Computational Insight into the Mechanism of Alkane Hydroxylation by Non-heme Fe(PyTACN) Iron Complexes. Effects of the Substrate and Solvent. Inorganic Chemistry, 2015, 54, 8223-8236.	1.9	24
114	Recent Advances in the Selective Oxidation of Alkyl C–H Bonds Catalyzed by Iron Coordination Complexes. Topics in Current Chemistry, 2015, 372, 27-54.	4.0	14
115	Trapping a Highly Reactive Nonheme Iron Intermediate That Oxygenates Strong C—H Bonds with Stereoretention. Journal of the American Chemical Society, 2015, 137, 15833-15842.	6.6	149
116	Building Complexity in O ₂ -Binding Copper Complexes. Site-Selective Metalation and Intermolecular O ₂ -Binding at Dicopper and Heterometallic Complexes Derived from an Unsymmetric Ligand. Inorganic Chemistry, 2014, 53, 12929-12938.	1.9	7
117	Sponge-like molecular cage for purification of fullerenes. Nature Communications, 2014, 5, 5557.	5.8	162
118	The Iron(II) Complex [Fe(CF ₃ SO ₃) ₂ (mcp)] as a Convenient, Readily Available Catalyst for the Selective Oxidation of Methylenic Sites in Alkanes. Advanced Synthesis and Catalysis, 2014, 356, 818-830.	2.1	85
119	Triggering the Generation of an Iron(IV)-Oxo Compound and Its Reactivity toward Sulfides by Ru ^{II} Photocatalysis. Journal of the American Chemical Society, 2014, 136, 4624-4633.	6.6	72
120	Evidence that steric factors modulate reactivity of tautomeric iron–oxo species in stereospecific alkane C–H hydroxylation. Chemical Communications, 2014, 50, 1408-1410.	2.2	38
121	lonic liquids as reaction media in catalytic oxidations with manganese and iron pyridyl triazacyclononane complexes. Inorganica Chimica Acta, 2014, 410, 60-64.	1.2	12
122	Structural modeling of iron halogenases: synthesis and reactivity of halide-iron(<scp>iv</scp>)-oxo compounds. Chemical Communications, 2014, 50, 10887.	2.2	58
123	Fe(6-Me-PyTACN)-catalyzed, one-pot oxidative cleavage of methyl oleate and oleic acid into carboxylic acids with H2O2 and NaIO4. Catalysis Science and Technology, 2014, 4, 708.	2.1	33
124	Identification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery properties. Organic and Biomolecular Chemistry, 2014, 12, 1652-1663.	1.5	30
125	Selective <i>Ortho</i> â€Hydroxylation–Defluorination of 2â€Fluorophenolates with a Bis(μâ€oxo)dicopper(III) Species. Angewandte Chemie - International Edition, 2014, 53, 9608-9612.	7.2	34
126	Copper-based water reduction catalysts for efficient light-driven hydrogen generation. Journal of Molecular Catalysis A, 2014, 395, 449-456.	4.8	20

#	Article	IF	CITATIONS
127	Direct observation of two-electron Ag(I)/Ag(III) redox cycles in coupling catalysis. Nature Communications, 2014, 5, 4373.	5.8	65
128	Theoretical Study of the Water Oxidation Mechanism with Non-heme Fe(Pytacn) Iron Complexes. Evidence That the Fe ^{IV} (O)(Pytacn) Species Cannot React with the Water Molecule To Form the O–O Bond. Inorganic Chemistry, 2014, 53, 5474-5485.	1.9	40
129	Unraveling the Mechanism of Water Oxidation Catalyzed by Nonheme Iron Complexes. Chemistry - A European Journal, 2014, 20, 5696-5707.	1.7	75
130	Assessing the Impact of Electronic and Steric Tuning of the Ligand in the Spin State and Catalytic Oxidation Ability of the Fe ^{II} (Pytacn) Family of Complexes. Inorganic Chemistry, 2013, 52, 9229-9244.	1.9	102
131	Asymmetric Epoxidation with H ₂ O ₂ by Manipulating the Electronic Properties of Non-heme Iron Catalysts. Journal of the American Chemical Society, 2013, 135, 14871-14878.	6.6	216
132	An Iron Catalyst for Oxidation of Alkyl CH Bonds Showing Enhanced Selectivity for Methylenic Sites. Chemistry - A European Journal, 2013, 19, 1908-1913.	1.7	98
133	Robust Iron Coordination Complexes with N-Based Neutral Ligands As Efficient Fenton-Like Catalysts at Neutral pH. Environmental Science & Technology, 2013, 47, 9918-9927.	4.6	40
134	Highly Stereoselective Epoxidation with H ₂ O ₂ Catalyzed by Electron-Rich Aminopyridine Manganese Catalysts. Organic Letters, 2013, 15, 6158-6161.	2.4	80
135	Nonheme oxoiron(<scp>iv</scp>) complexes of pentadentate N5 ligands: spectroscopy, electrochemistry, and oxidative reactivity. Chemical Science, 2013, 4, 282-291.	3.7	144
136	Discussion of an open problem. Nature Chemistry, 2013, 5, 7-9.	6.6	51
137	Selfâ€Assembled Tetragonal Prismatic Molecular Cage Highly Selective for Anionic Ï€ Guests. Chemistry - A European Journal, 2013, 19, 1445-1456.	1.7	38
138	Regioselective Oxidation of Nonactivated Alkyl C–H Groups Using Highly Structured Non-Heme Iron Catalysts. Journal of Organic Chemistry, 2013, 78, 1421-1433.	1.7	112
139	The Mechanism of Stereospecific CH Oxidation by Fe(Pytacn) Complexes: Bioinspired Nonâ€Heme Iron Catalysts Containing <i>cis</i> ‣abile Exchangeable Sites. Chemistry - A European Journal, 2013, 19, 6724-6738.	1.7	88
140	Highly Effective Water Oxidation Catalysis with Iridium Complexes through the Use of NaIO ₄ . Chemistry - A European Journal, 2013, 19, 7203-7213.	1.7	78
141	Fe(PyTACN) atalyzed <i>cis</i> â€Đihydroxylation of Olefins with Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2013, 355, 947-956.	2.1	48
142	Electronic Effects on Singleâ€6ite Iron Catalysts for Water Oxidation. Chemistry - A European Journal, 2013, 19, 8042-8047.	1.7	118
143	EPR detection of Fe(V)=O active species in nonheme iron-catalyzed oxidations. Catalysis Communications, 2012, 29, 105-108.	1.6	37
144	Alkane C–H Oxygenation Catalyzed by Transition Metal Complexes. Catalysis By Metal Complexes, 2012, , 143-228.	0.6	18

#	Article	IF	CITATIONS
145	Catalytic C–S, C–Se, and C–P Cross-Coupling Reactions Mediated by a Cu ^I /Cu ^{III} Redox Cycle. Organometallics, 2012, 31, 7976-7982.	1.1	54
146	Ironâ€Catalyzed CH Hydroxylation and Olefin <i>cis</i> â€Dihydroxylation Using a Singleâ€Electron Oxidant and Water as the Oxygenâ€Atom Source. Chemistry - A European Journal, 2012, 18, 13269-13273.	1.7	48
147	Simple and Sustainable Copper–O ₂ Chemistry towards Highâ€Value Products. ChemCatChem, 2012, 4, 175-176.	1.8	6
148	Electrophilic Arene Hydroxylation and Phenol OH Oxidations Performed by an Unsymmetric μâ€Ê ¹ :η ¹ â€O ₂ â€Peroxo Dicopper(II) Complex. Chemistry - A European Jo 2012, 18, 2113-2122.	ournal,	27
149	Wellâ€Defined Heterometallic and Unsymmetric M ₂ O ₂ Complexes Arising from Binding and Activation of O ₂ . European Journal of Inorganic Chemistry, 2012, 2012, 179-187.	1.0	31
150	Stereoselective Epoxidation of Alkenes with Hydrogen Peroxide using a Bipyrrolidineâ€Based Family of Manganese Complexes. Advanced Synthesis and Catalysis, 2012, 354, 65-70.	2.1	72
151	Aryl–O reductive elimination from reaction of well-defined aryl–Cuiii species with phenolates: the importance of ligand reactivity. Dalton Transactions, 2011, 40, 8796.	1.6	30
152	Observation of Fe(V)=O using variable-temperature mass spectrometry and its enzyme-like C–H and C=C oxidation reactions. Nature Chemistry, 2011, 3, 788-793.	6.6	264
153	Nucleophilic Aryl Fluorination and Aryl Halide Exchange Mediated by a Cu ^I /Cu ^{III} Catalytic Cycle. Journal of the American Chemical Society, 2011, 133, 19386-19392.	6.6	232
154	Selective C–H oxidation catalyzed by metalloporphyrins. Coordination Chemistry Reviews, 2011, 255, 2912-2932.	9.5	315
155	Efficient water oxidation catalysts based on readily available iron coordination complexes. Nature Chemistry, 2011, 3, 807-813.	6.6	716
156	A Biomimetic Iron Catalyst for the Epoxidation of Olefins with Molecular Oxygen at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 1425-1429.	7.2	118
157	Evidence for a Precursor Complex in CH Hydrogen Atom Transfer Reactions Mediated by a Manganese(IV) Oxo Complex. Angewandte Chemie - International Edition, 2011, 50, 5648-5653.	7.2	103
158	Modeling the <i>cis</i> â€Oxoâ€Labile Binding Site Motif of Nonâ€Heme Iron Oxygenases: Water Exchange and Oxidation Reactivity of a Nonâ€Heme Iron(IV)â€Oxo Compound Bearing a Tripodal Tetradentate Ligand. Chemistry - A European Journal, 2011, 17, 1622-1634.	1.7	105
159	Observation and Mechanistic Study of Facile Cĩ£¿O Bond Formation between a Wellâ€Defined Aryl–Copper(III) Complex and Oxygen Nucleophiles. Chemistry - A European Journal, 2011, 17, 10643-10650.	1.7	121
160	Copper-Catalyzed Aerobic Oxidative Functionalization of an Arene Câ^'H Bond: Evidence for an Aryl-Copper(III) Intermediate. Journal of the American Chemical Society, 2010, 132, 12068-12073.	6.6	425
161	O ₂ â€Activation and Selective Phenolate <i>ortho</i> â€Hydroxylation by an Unsymmetric Dicopper ι⁄4â€Î• ¹ <i>:</i> î· ¹ â€Peroxido Complex. Angewandte Chemie - International Edition, 2010, 49, 2406-2409.	7.2	104
162	Direct observation of Cul/CullI redox steps relevant to Ullmann-type coupling reactions. Chemical Science, 2010, 1, 326.	3.7	246

#	Article	IF	CITATIONS
163	Molecular mechanism of acid-triggered aryl–halide reductive elimination in well-defined aryl–Culll–halide species. Dalton Transactions, 2010, 39, 10458.	1.6	41
164	A Broad Substrateâ€Scope Method for Fast, Efficient and Selective Hydrogen Peroxideâ€Epoxidation. Advanced Synthesis and Catalysis, 2009, 351, 348-352.	2.1	109
165	Olefinâ€Dependent Discrimination between Two Nonheme HOFe ^V O Tautomeric Species in Catalytic H ₂ O ₂ Epoxidations. Chemistry - A European Journal, 2009, 15, 3359-3362.	1.7	77
166	Stereospecific CH Oxidation with H ₂ O ₂ Catalyzed by a Chemically Robust Siteâ€Isolated Iron Catalyst. Angewandte Chemie - International Edition, 2009, 48, 5720-5723.	7.2	254
167	Tyrosinaseâ€Like Reactivity in a Cu ^{III} ₂ (μâ€O) ₂ Species. Chemistry - A European Journal, 2008, 14, 3535-3538.	1.7	73
168	A Novel Platform for Modeling Oxidative Catalysis in Nonâ€Heme Iron Oxygenases with Unprecedented Efficiency. Chemistry - A European Journal, 2008, 14, 5727-5731.	1.7	130
169	Nanosized trigonal prismatic and antiprismatic Cull coordination cages based on tricarboxylate linkers. Dalton Transactions, 2008, , 1679.	1.6	15
170	Efficient and Selective Peracetic Acid Epoxidation Catalyzed by a Robust Manganese Catalyst. Organic Letters, 2008, 10, 2095-2098.	2.4	99
171	Self-assembling of nanoscopic molecular rectangles, extended helicates and porous-like materials based on macrocyclic dicopper building blocks under fine supramolecular control. Chemical Communications, 2007, , 4410.	2.2	19
172	Chiral manganese complexes with pinene appended tetradentate ligands as stereoselective epoxidation catalysts. Dalton Transactions, 2007, , 5539.	1.6	79
173	Kinetic Analysis of the Conversion of Nonheme (Alkylperoxo)iron(III) Species to Iron(IV) Complexes. Inorganic Chemistry, 2007, 46, 2398-2408.	1.9	51
174	Fast O2Binding at Dicopper Complexes Containing Schiff-Base Dinucleating Ligands. Inorganic Chemistry, 2007, 46, 4997-5012.	1.9	43
175	X-ray Absorption Spectroscopic Studies of High-Spin Nonheme (Alkylperoxo)iron(III) Intermediates. Inorganic Chemistry, 2007, 46, 8410-8417.	1.9	34
176	Alkane Hydroxylation by a Nonheme Iron Catalyst that Challenges the Heme Paradigm for Oxygenase Action. Journal of the American Chemical Society, 2007, 129, 15766-15767.	6.6	195
177	Structural and Kinetic Study of Reversible CO ₂ Fixation by Dicopper Macrocyclic Complexes. From Intramolecular Binding to Self-Assembly of Molecular Boxes. Inorganic Chemistry, 2007, 46, 9098-9110.	1.9	49
178	Copper(II) Hexaaza Macrocyclic Binuclear Complexes Obtained from the Reaction of Their Copper(I) Derivates and Molecular Dioxygen. Inorganic Chemistry, 2006, 45, 3569-3581.	1.9	61
179	Isomeric Molecular Rectangles Resulting from Self-Assembly of Dicopper Complexes of Macrocyclic Ligands. Inorganic Chemistry, 2006, 45, 2501-2508.	1.9	19
180	Redox-Controlled Molecular Flipper Based on a Chiral Cu Complex. Inorganic Chemistry, 2006, 45, 9643-9645.	1.9	10

#	Article	IF	CITATIONS
181	O2Chemistry of Dicopper Complexes with Alkyltriamine Ligands. Comparing Synergistic Effects on O2Binding. Inorganic Chemistry, 2006, 45, 5239-5241.	1.9	26
182	Oxoiron(IV) complexes of the tris(2-pyridylmethyl)amine ligand family: effect of pyridine α-substituents. Journal of Biological Inorganic Chemistry, 2006, 11, 272-276.	1.1	43
183	Ligand Topology Effects on Olefin Oxidations by Bio-Inspired [Fell(N2Py2)] Catalysts. Chemistry - A European Journal, 2006, 12, 7489-7500.	1.7	86
184	High-Valent Nonheme Iron. Two Distinct Iron(IV) Species Derived from a Common Iron(II) Precursor. Journal of the American Chemical Society, 2005, 127, 10512-10525.	6.6	113
185	Synthesis, Structure and Hydrolytic Properties of a Family of New Zn Complexes Containing Hexaazamacrocyclic Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 857-865.	1.0	11
186	Dioxygen Activation at Mononuclear Nonheme Iron Active Sites: Enzymes, Models, and Intermediates. ChemInform, 2004, 35, no.	0.1	1
187	XAS characterization of end-on and side-on peroxoiron(iii) complexes of the neutral pentadentate N-donor ligand N-methyl-N,N′,N′-tris(2-pyridylmethyl)ethane-1,2-diamine. Dalton Transactions, 2004, , 3191-3198.	1.6	20
188	A Structural and Mössbauer Study of Complexes with Fe2(μ-O(H))2 Cores:  Stepwise Oxidation from Fell(μ-OH)2Fell through Fell(μ-OH)2Felll to Felll(μ-O)(μ-OH)Felll. Inorganic Chemistry, 2004, 43, 3067-3079.	. 1.9	40
189	Dioxygen Activation at Mononuclear Nonheme Iron Active Sites:Â Enzymes, Models, and Intermediates. Chemical Reviews, 2004, 104, 939-986.	23.0	2,276
190	A Dramatic Push Effect on the Homolysis of FeIII(OOR) Intermediates To Form Non-Heme FeIVi£¾O Complexes. Angewandte Chemie - International Edition, 2003, 42, 3671-3673.	7.2	89
191	Iron-Catalyzed Olefincis-Dihydroxylation by H2O2:Â Electrophilic versus Nucleophilic Mechanisms. Journal of the American Chemical Society, 2003, 125, 9912-9913.	6.6	116
192	Role of Carboxylate Bridges in Modulating Nonheme Diiron(II)/O2Reactivity. Inorganic Chemistry, 2003, 42, 7519-7530.	1.9	38
193	Dinuclear Copper(I) Complexes with Hexaaza Macrocyclic Dinucleating Ligands:  Structure and Dynamic Properties. Inorganic Chemistry, 2003, 42, 4456-4468.	1.9	21
194	Copper(I)â^'Dioxygen Reactivity of [(L)CuI]+(L = Tris(2-pyridylmethyl)amine):Â Kinetic/Thermodynamic and Spectroscopic Studies Concerning the Formation of Cuâ^'O2and Cu2â^'O2Adducts as a Function of Solvent Medium and 4-Pyridyl Ligand Substituent Variations. Inorganic Chemistry, 2003, 42, 1807-1824.	1.9	179
195	4-Nitrocatechol as a probe of a Mn(II)-dependent extradiol-cleaving catechol dioxygenase (MndD): comparison with relevant Fe(II) and Mn(II) model complexes. Journal of Biological Inorganic Chemistry, 2003, 8, 263-272.	1.1	33
196	An FeIVO complex of a tetradentate tripodal nonheme ligand. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3665-3670.	3.3	322
197	Spin state tuning of non-heme iron-catalyzed hydrocarbon oxidations: participation of Felll–OOH and FeVì€O intermediatesBased on the presentation given at Dalton Discussion No. 4, 10–13th January 2002, Kloster Banz, Germany Dalton Transactions RSC, 2002, , 672-679.	2.3	193
198	High conversion of olefins to cis-diols by non-heme iron catalysts and H2O2. Chemical Communications, 2002, , 1288-1289.	2.2	79

#	Article	IF	CITATIONS
199	Olefin Cis-Dihydroxylation versus Epoxidation by Non-Heme Iron Catalysts:Â Two Faces of an Felllâ^'OOH Coin. Journal of the American Chemical Society, 2002, 124, 3026-3035.	6.6	437
200	Ligand Topology Tuning of Iron-Catalyzed Hydrocarbon Oxidations We thank the National Institutes of Health for financial support (GM33162 to L.Q.) and Fundacio La Caixa for a postdoctoral fellowship (M.C.) Angewandte Chemie, 2002, 114, 2283.	1.6	38
201	Ligand Topology Tuning of Iron-Catalyzed Hydrocarbon Oxidations We thank the National Institutes of Health for financial support (GM33162 to L.Q.) and Fundacio La Caixa for a postdoctoral fellowship (M.C.) Angewandte Chemie - International Edition, 2002, 41, 2179.	7.2	172
202	Spin State Tuning of Nonâ€Heme Ironâ€Catalyzed Hydrocarbon Oxidations: Participation of Fe(III)—O—OH and Fe(V):O Intermediates. ChemInform, 2002, 33, 286-286.	0.1	0
203	Ligand topology tuning of iron-catalyzed hydrocarbon oxidations. Angewandte Chemie - International Edition, 2002, 41, 2179-81.	7.2	15
204	Modeling Rieske Dioxygenases:  The First Example of Iron-Catalyzed Asymmetric cis-Dihydroxylation of Olefins. Journal of the American Chemical Society, 2001, 123, 6722-6723.	6.6	241
205	A Synthetic Model for the Putative FeIV2O2Diamond Core of Methane Monooxygenase Intermediate Q. Journal of the American Chemical Society, 2001, 123, 12931-12932.	6.6	72
206	A nonheme iron(II) complex that models the redox cycle of lipoxygenase. Journal of Biological Inorganic Chemistry, 2001, 6, 275-284.	1.1	34
207	Biomimetic nonheme iron catalysts for alkane hydroxylation. Coordination Chemistry Reviews, 2000, 200-202, 517-544.	9.5	464
208	Copper(I)-induced activation of dioxygen for the oxidation of organic substrates under mild conditions. An evaluation of ligand effects. Journal of Molecular Catalysis A, 1999, 142, 113-124.	4.8	25
209	FeCl 2 py 4 + catalyzed transformation of aromatic amines by HOOH under mild conditions. Journal of Molecular Catalysis A, 1999, 148, 49-58.	4.8	9
210	The functionalization of saturated hydrocarbons. Part 39. Further evidence for the role of the iron iron-carbon bond in Gif chemistry. Tetrahedron, 1997, 53, 7417-7428.	1.0	18
211	Chapter 6. Bioinspired Non-heme Iron Catalysts in C–H and CC Oxidation Reactions. , 0, , 148-208.		2