List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6348021/publications.pdf Version: 2024-02-01

YUANEA LUL

#	Article	IF	CITATIONS
1	The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests. Food Chemistry, 2018, 268, 334-341.	4.2	216
2	Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chemistry, 2018, 246, 137-149.	4.2	121
3	Changes in Volatile Compounds of Peanut Oil during the Roasting Process for Production of Aromatic Roasted Peanut Oil. Journal of Food Science, 2011, 76, C404-12.	1.5	115
4	Recent advances on proteinâ€based Pickering high internal phase emulsions (Pickering HIPEs): Fabrication, characterization, and applications. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1934-1968.	5.9	105
5	A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresource Technology, 2015, 177, 51-57.	4.8	101
6	Effects of frying oils' fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process. Food Chemistry, 2017, 237, 98-105.	4.2	83
7	Model for Human Milk Fat Substitute Evaluation Based on Triacylglycerol Composition Profile. Journal of Agricultural and Food Chemistry, 2013, 61, 167-175.	2.4	76
8	Fatty acid profiles of typical dietary lipids after gastrointestinal digestion and absorbtion: A combination study between in-vitro and in-vivo. Food Chemistry, 2019, 280, 34-44.	4.2	64
9	Oleogels from sodium stearoyl lactylate-based lamellar crystals: Structural characterization and bread application. Food Chemistry, 2019, 292, 134-142.	4.2	64
10	The impact of roasting, high pressure homogenization and sterilization on peanut milk and its oil bodies. Food Chemistry, 2019, 280, 270-277.	4.2	58
11	Sinapine reduces non-alcoholic fatty liver disease in mice by modulating the composition of the gut microbiota. Food and Function, 2019, 10, 3637-3649.	2.1	55
12	Triglyceride Structure Modulates Gastrointestinal Digestion Fates of Lipids: A Comparative Study between Typical Edible Oils and Triglycerides Using Fully Designed in Vitro Digestion Model. Journal of Agricultural and Food Chemistry, 2018, 66, 6227-6238.	2.4	54
13	Effect of frying oils' fatty acid profile on quality, free radical and volatiles over deep-frying process: A comparative study using chemometrics. LWT - Food Science and Technology, 2019, 101, 331-341.	2.5	51
14	Comparative Analysis of Lipid Composition and Thermal, Polymorphic, and Crystallization Behaviors of Granular Crystals Formed in Beef Tallow and Palm Oil. Journal of Agricultural and Food Chemistry, 2011, 59, 1432-1441.	2.4	50
15	Multiple Hydrogen-Bonding Interactions Enhance the Solubility of Starch in Natural Deep Eutectic Solvents: Molecule and Macroscopic Scale Insights. Journal of Agricultural and Food Chemistry, 2019, 67, 12366-12373.	2.4	50
16	Co-surfactant free microemulsions: Preparation, characterization and stability evaluation for food application. Food Chemistry, 2016, 204, 194-200.	4.2	48
17	Physical Properties, Microstructure, Intermolecular Forces, and Oxidation Stability of Soybean Oil Oleogels Structured by Different Cellulose Ethers. European Journal of Lipid Science and Technology, 2018, 120, 1700287.	1.0	46
18	The mathematical prediction model for the oxidative stability of vegetable oils by the main fatty acids composition and thermogravimetric analysis. LWT - Food Science and Technology, 2018, 96, 51-57.	2.5	44

#	Article	IF	CITATIONS
19	Interfacial interaction of small molecular emulsifiers tea saponin and monoglyceride: Relationship to the formation and stabilization of emulsion gels. Food Hydrocolloids, 2021, 117, 106737.	5.6	44
20	Influence of indigenous minor components on fat crystal network of fully hydrogenated palm kernel oil and fully hydrogenated coconut oil. Food Chemistry, 2018, 255, 49-57.	4.2	43
21	Effects of Polar Compounds Generated from the Deep-Frying Process of Palm Oil on Lipid Metabolism and Glucose Tolerance in Kunming Mice. Journal of Agricultural and Food Chemistry, 2017, 65, 208-215.	2.4	42
22	Lipid composition modulates the intestine digestion rate and serum lipid status of different edible oils: a combination of <i>in vitro</i> and <i>in vivo</i> studies. Food and Function, 2019, 10, 1490-1503.	2.1	42
23	Soybean oil bodies: A review on composition, properties, food applications, and future research aspects. Food Hydrocolloids, 2022, 124, 107296.	5.6	39
24	Influences of dietary oils and fats, and the accompanied minor content of components on the gut microbiota and gut inflammation: A review. Trends in Food Science and Technology, 2021, 113, 255-276.	7.8	38
25	<i>In vitro</i> toxicity of aflatoxin B ₁ and its photodegradation products in HepG2 cells. Journal of Applied Toxicology, 2012, 32, 276-281.	1.4	37
26	Digestion fates of different edible oils vary with their composition specificities and interactions with bile salts. Food Research International, 2018, 111, 281-290.	2.9	37
27	How <i>Candida antarctica</i> lipase B can be activated in natural deep eutectic solvents: experimental and molecular dynamics studies. Journal of Chemical Technology and Biotechnology, 2020, 95, 86-93.	1.6	37
28	Effect of water content on thermal oxidation of oleic acid investigated by combination of EPR spectroscopy and SPME-GC-MS/MS. Food Chemistry, 2017, 221, 1434-1441.	4.2	35
29	Characterization of Peanut Oil Bodies Integral Proteins, Lipids, and Their Associated Phytochemicals. Journal of Food Science, 2018, 83, 93-100.	1.5	35
30	Characterization of Graininess Formed in All Beef Tallow-Based Shortening. Journal of Agricultural and Food Chemistry, 2010, 58, 11463-11470.	2.4	34
31	Polysaccharide-stabilized aqueous foams to fabricate highly oil-absorbing cryogels: Application and formation process for preparation of edible oleogels. Food Hydrocolloids, 2021, 120, 106901.	5.6	32
32	Effects of Antarctic krill oil on lipid and glucose metabolism in C57BL/6J mice fed with high fat diet. Lipids in Health and Disease, 2017, 16, 218.	1.2	30
33	Epoxy Stearic Acid, an Oxidative Product Derived from Oleic Acid, Induces Cytotoxicity, Oxidative Stress, and Apoptosis in HepG2 Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 5237-5246.	2.4	29
34	Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 964-998.	5.9	29
35	Comparison of different polar compounds-induced cytotoxicity in human hepatocellular carcinoma HepG2 cells. Lipids in Health and Disease, 2016, 15, 30.	1.2	28
36	Activation and stabilization of Candida antarctica lipase B in choline chloride-glycerol-water binary system via tailoring the hydrogen-bonding interaction. International Journal of Biological Macromolecules, 2019, 136, 1086-1095.	3.6	28

#	Article	IF	CITATIONS
37	Antarctic krill lipid extracted by subcritical n-butane and comparison with supercritical CO2 and conventional solvent extraction. LWT - Food Science and Technology, 2018, 94, 1-7.	2.5	27
38	Non-triglyceride components modulate the fat crystal network of palm kernel oil and coconut oil. Food Research International, 2018, 105, 423-431.	2.9	27
39	Development and Validation of a QuEChERS-LC-MS/MS Method for the Analysis of Phenolic Compounds in Rapeseed Oil. Journal of Agricultural and Food Chemistry, 2019, 67, 4105-4112.	2.4	26
40	Beeswax and carnauba wax modulate the crystallization behavior of palm kernel stearin. LWT - Food Science and Technology, 2019, 115, 108446.	2.5	25
41	Prebiotic carbohydrates: Effect on physicochemical stability and solubility of algal oil nanoparticles. Carbohydrate Polymers, 2020, 228, 115372.	5.1	24
42	Effect of temperature on thermal oxidation of palmitic acid studied by combination of EPR spin trapping technique and SPME-GC–MS/MS. Food Chemistry, 2017, 234, 439-444.	4.2	23
43	Lipid Profiling and Microstructure Characteristics of Goat Milk Fat from Different Stages of Lactation. Journal of Agricultural and Food Chemistry, 2020, 68, 7204-7213.	2.4	23
44	Volatile components of deep-fried soybean oil as indicator indices of lipid oxidation and quality degradation. European Food Research and Technology, 2020, 246, 1183-1192.	1.6	23
45	Development of low-oil emulsion gel by solidifying oil droplets: Roles of internal beeswax concentration. Food Chemistry, 2021, 345, 128811.	4.2	23
46	Evaluation of colour stability of clear red pitaya juice treated by thermosonication. LWT - Food Science and Technology, 2020, 121, 108997.	2.5	22
47	Using Shortâ€Wave Infrared Radiation to Improve Aqueous Enzymatic Extraction of Peanut Oil: Evaluation of Peanut Cotyledon Microstructure and Oil Quality. European Journal of Lipid Science and Technology, 2018, 120, 1700285.	1.0	21
48	Interactions between Food Hazards and Intestinal Barrier: Impact on Foodborne Diseases. Journal of Agricultural and Food Chemistry, 2020, 68, 14728-14738.	2.4	21
49	Synergetic effects of water-soluble polysaccharides for intensifying performances of oleogels fabricated by oil-absorbing cryogels. Food Chemistry, 2022, 372, 131357.	4.2	21
50	Visualized phase behavior of binary blends of coconut oil and palm stearin. Food Chemistry, 2018, 266, 66-72.	4.2	19
51	Foodomics Revealed the Effects of Extract Methods on the Composition and Nutrition of Peanut Oil. Journal of Agricultural and Food Chemistry, 2020, 68, 1147-1156.	2.4	19
52	Catastrophic phase inversion of bigels characterized by fluorescence intensity-based 3D modeling and the formability for decorating and 3D printing. Food Hydrocolloids, 2022, 126, 107461.	5.6	19
53	Influence of total polar compounds on lipid metabolism, oxidative stress and cytotoxicity in HepG2 cells. Lipids in Health and Disease, 2019, 18, 37.	1.2	18
54	Gelation behavior and crystal network of natural waxes and corresponding binary blends in highâ€oleic sunflower oil. Journal of Food Science, 2021, 86, 3987-4000.	1.5	18

#	Article	IF	CITATIONS
55	Quantitative determination of epoxy stearic acids derived from oxidized frying oil based on solid-phase extraction and gas chromatography. LWT - Food Science and Technology, 2018, 92, 250-257.	2.5	16
56	Lipase and Metal Chloride Hydrate-Natural Deep Eutectic Solvents Synergistically Catalyze Amidation Reaction via Multiple Noncovalent Bond Interactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 18174-18184.	3.2	16
57	Understanding of the Role of Pretreatment Methods on Rapeseed Oil from the Perspective of Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2020, 68, 8847-8854.	2.4	16
58	Mitigation of 3-MCPD esters and glycidyl esters during the physical refining process of palm oil by micro and macro laboratory scale refining. Food Chemistry, 2020, 328, 127147.	4.2	16
59	High sensitive and efficient detection of edible oils adulterated with used frying oil by electron spin resonance. Food Control, 2017, 73, 540-545.	2.8	15
60	Validation of a Simple Extraction Method for Oil Bodies Isolated from Peanuts. European Journal of Lipid Science and Technology, 2018, 120, 1700363.	1.0	15
61	Identification and quantification of synergetic antioxidants and their application in sunflower oil. LWT - Food Science and Technology, 2020, 118, 108726.	2.5	15
62	ldentification of α-Tocopherol and Its Oxidation Products by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2020, 68, 669-677.	2.4	15
63	Comparation of micro-viscosity of liquid oil in different colloidal fat crystal networks using molecular rotors. Food Chemistry, 2020, 317, 126382.	4.2	15
64	Molecular dynamics revealed the effect of epoxy group on triglyceride digestion. Food Chemistry, 2022, 373, 131285.	4.2	15
65	Study on combined heat pump drying with freezeâ€drying of Antarctic krill and its effects on the lipids. Journal of Food Process Engineering, 2017, 40, e12577.	1.5	14
66	Exploration of the natural waxes-tuned crystallization behavior, droplet shape and rheology properties of O/W emulsions. Journal of Colloid and Interface Science, 2021, 587, 417-428.	5.0	14
67	Aflatoxin B1 decontamination by UV-mutated live and immobilized Aspergillus niger. Food Control, 2016, 61, 235-242.	2.8	13
68	Different dietary lipid consumption affects the serum lipid profiles, colonic short chain fatty acid composition and the gut health of Sprague Dawley rats. Food Research International, 2020, 132, 109117.	2.9	13
69	Comparative assessment of physicochemical and antioxidative properties of mung bean protein hydrolysates. RSC Advances, 2020, 10, 2634-2645.	1.7	13
70	Effect of flameless catalytic infrared treatment on rancidity and bioactive compounds in wheat germ oil. RSC Advances, 2016, 6, 37265-37273.	1.7	12
71	lonic hydrogen-bonding interaction controlled electrophilicity and nucleophilicity: Mechanistic insights into the synergistic catalytic effect of lipase and natural deep eutectic solvents in amidation reaction. Journal of Catalysis, 2020, 384, 159-168.	3.1	12
72	Molecular dynamics simulation for mechanism revelation of the safety and nutrition of lipids and derivatives in food: State of the art. Food Research International, 2021, 145, 110399.	2.9	12

#	Article	IF	CITATIONS
73	A comparative study between freeze-dried and spray-dried goat milk on lipid profiling and digestibility. Food Chemistry, 2022, 387, 132844.	4.2	12
74	Chemical Composition, Physical Properties, and the Oxidative Stability of Oil Bodies Extracted From <i>Argania spinosa</i> . JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 485-495.	0.8	11
75	Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures. Food Chemistry, 2019, 288, 108-116.	4.2	11
76	Comparative Analysis of Small-Molecule Diffusivity in Different Fat Crystal Network. Journal of Agricultural and Food Chemistry, 2018, 66, 1015-1022.	2.4	10
77	Evaluation of the functional quality of rapeseed oil obtained by different extraction processes in a Sprague-Dawley rat model. Food and Function, 2019, 10, 6503-6516.	2.1	10
78	Extraction Technology Can Impose Influences on Peanut Oil Functional Quality: A Study to Investigate the Lipid Metabolism by Sprague–Dawley Rat Model. Journal of Food Science, 2019, 84, 911-919.	1.5	10
79	Effects of epoxy stearic acid on lipid metabolism in HepC2 cells. Journal of Food Science, 2020, 85, 3644-3652.	1.5	10
80	Deepâ€frying oil induces cytotoxicity, inflammation and apoptosis on intestinal epithelial cells. Journal of the Science of Food and Agriculture, 2022, 102, 3160-3168.	1.7	10
81	SWATH-MS2&1: Development and Validation of a Pseudotargeted Lipidomics Method for the Analysis of Glycerol Esters in Milk. Journal of Agricultural and Food Chemistry, 2022, 70, 3331-3343.	2.4	10
82	Development and Application of Feature-Based Molecular Networking for Phospholipidomics Analysis. Journal of Agricultural and Food Chemistry, 2022, 70, 7815-7825.	2.4	10
83	Sinapine-enriched rapeseed oils reduced fatty liver formation in high-fat diet-fed C57BL/6J mice. RSC Advances, 2020, 10, 21248-21258.	1.7	9
84	Metabolomics reveals the impact of the saturation of dietary lipids on the aging and longevity of <i>C. elegans</i> . Molecular Omics, 2022, 18, 430-438.	1.4	9
85	Lipid oxidation stability of ultraâ€highâ€temperature shortâ€time sterilization sporodermâ€broken pine pollen (UHTâ€PP) and ⁶⁰ Coâ€irradiation sterilization sporodermâ€broken pine pollen (⁶⁰ Coâ€PP). Journal of the Science of Food and Agriculture, 2019, 99, 675-684.	1.7	8
86	Organogels based on the polyglyceryl fatty acid ester and sunflower oil: Macroscopic property, microstructure, interaction force, and application. LWT - Food Science and Technology, 2019, 116, 108590.	2.5	8
87	Relationship between lipid composition and rheological properties of colloidal fat crystal networks: A comparative study using chemometrics. LWT - Food Science and Technology, 2020, 118, 108814.	2.5	8
88	Biohazard and dynamic features of different polar compounds in vegetable oil during thermal oxidation. LWT - Food Science and Technology, 2021, 146, 111450.	2.5	8
89	Thermal Oxidation Rate of Oleic Acid Increased Dramatically at 140 °C Studied using Electron Spin Resonance and GC–MS/MS. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 937-944.	0.8	7
90	Effects of polar compounds in fried palm oil on liver lipid metabolism in C57 mice. Journal of Food Science, 2020, 85, 1915-1923.	1.5	7

#	Article	IF	CITATIONS
91	Metabolomics reveals the toxicological effects of polar compounds from frying palm oil. Food and Function, 2020, 11, 1611-1623.	2.1	7
92	Influence of extraction technology on rapeseed oil functional quality: a study on rapeseed polyphenols. Food and Function, 2022, 13, 270-279.	2.1	7
93	Synthesis and application of magnetic surface molecularly imprinted polymers in selective solid-phase extraction of epoxy triglyceride from deep frying oil. Food Control, 2022, 137, 108896.	2.8	7
94	Different typical dietary lipid consumption affects the bile acid metabolism and the gut microbiota structure: an animal trial using <scp>Spragueâ€Dawley</scp> rats. Journal of the Science of Food and Agriculture, 2022, 102, 3179-3192.	1.7	6
95	Beeswax crystals form a network structure in highly unsaturated oils and O/W emulsions under supersaturation and cool temperature conditions. LWT - Food Science and Technology, 2022, 164, 113594.	2.5	6
96	Synergistic Catalytic Synthesis of Gemini Lipoamino Acids Based on Multiple Hydrogen-Bonding Interactions in Natural Deep Eutectic Solvents-Enzyme System. Journal of Agricultural and Food Chemistry, 2020, 68, 989-997.	2.4	5
97	Crystallization behavior and nano-micro structure of lauric acid-rich fats with and without indigenous diglycerides. Food Chemistry, 2021, 365, 130458.	4.2	5
98	L-ascorbyl palmitate modify the crystallization behavior of palm oil: Mechanism and application. LWT - Food Science and Technology, 2020, 122, 108999.	2.5	4
99	Formation of Polar Compounds During Deepâ€frying—Determination by ¹ H NMR and ESR. European Journal of Lipid Science and Technology, 2020, 122, 1900363.	1.0	4
100	Influence of different dietary oil consumption on nutrient malabsorption: An animal trial using Sprague Dawley rats. Journal of Food Biochemistry, 2021, 45, e13695.	1.2	4
101	Effects of triolein dilution on the structural and mechanical properties of lauric acid-rich fat. LWT - Food Science and Technology, 2021, 150, 112019.	2.5	3
102	The effect of krill oil on longevity and locomotion: a pilot study. Molecular Omics, 2022, 18, 206-213.	1.4	3
103	The Characteristics and Analysis of Polar Compounds in Deep-Frying Oil: a Mini Review. Food Analytical Methods, 2022, 15, 2767-2776.	1.3	3
104	Influence of polar compounds distribution in deepâ€frying oil on lipid digestion behaviour. International Journal of Food Science and Technology, 2022, 57, 3523-3531.	1.3	1
105	Lipidome reveals the alleviation of acrylamide-induced impairment by krill oil. Food and Function, 2022, 13, 8012-8021.	2.1	1
106	Palm oil consumption and its repercussion on endogenous fatty acids distribution. Food and Function, 2021, 12, 2020-2031.	2.1	0
107	Truncated Au Decahedron by the Time Induced Truncating. Nanoscience and Nanotechnology Letters, 2015, 7, 685-689.	0.4	0