
Lionel Mourey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6347694/publications.pdf Version: 2024-02-01

LIONEL MOUDEV

#	Article	IF	CITATIONS
1	Microtubule nucleation by γ-tubulin complexes. Nature Reviews Molecular Cell Biology, 2011, 12, 709-721.	37.0	616
2	Crystal structure ofEscherichia coli TEM1 β-lactamase at 1.8 à resolution. Proteins: Structure, Function and Bioinformatics, 1993, 16, 364-383.	2.6	364
3	Assistance of Microbial Glycolipid Antigen Processing by CD1e. Science, 2005, 310, 1321-1324.	12.6	229
4	The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure, 1999, 7, 277-287.	3.3	200
5	Conformational changes induced by phosphorylation of the FixJ receiver domain. Structure, 1999, 7, 1505-1515.	3.3	187
6	Structural Basis for Clinical Longevity of Carbapenem Antibiotics in the Face of Challenge by the Common Class A β-Lactamases from the Antibiotic-Resistant Bacteria. Journal of the American Chemical Society, 1998, 120, 9748-9752.	13.7	138
7	Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nature Structural Biology, 1998, 5, 25-29.	9.7	117
8	Protein X-ray Crystallography and Drug Discovery. Molecules, 2020, 25, 1030.	3.8	115
9	Crystal Structure of Cleaved Bovine Antithrombin III at 3·2 à Resolution. Journal of Molecular Biology, 1993, 232, 223-241.	4.2	110
10	Crystal Structure of Leucotoxin S Component. Journal of Biological Chemistry, 2004, 279, 41028-41037.	3.4	99
11	Exploring the Conformational States and Rearrangements of Yarrowia lipolytica Lipase. Biophysical Journal, 2010, 99, 2225-2234.	0.5	96
12	The Polyketide Synthase Pks13 Catalyzes a Novel Mechanism of Lipid Transfer in Mycobacteria. Chemistry and Biology, 2014, 21, 1660-1669.	6.0	91
13	The structure of Staphylococcus aureus epidermolytic toxin A, an atypic serine protease, at 1.7 Ã resolution. Structure, 1997, 5, 813-824.	3.3	88
14	Protein-protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability. Molecular Microbiology, 2004, 54, 1161-1172.	2.5	88
15	X-ray Analysis of the NMC-A β-Lactamase at 1.64-à Resolution, a Class A Carbapenemase with Broad Substrate Specificity. Journal of Biological Chemistry, 1998, 273, 26714-26721.	3.4	79
16	Crystal structure of γ-tubulin complex protein GCP4 provides insight into microtubule nucleation. Nature Structural and Molecular Biology, 2011, 18, 915-919.	8.2	79
17	Functional and Structural Characterization of α-(1→2) Branching Sucrase Derived from DSR-E Glucansucrase. Journal of Biological Chemistry, 2012, 287, 7915-7924.	3.4	78
18	Structure-Function Analysis of the THAP Zinc Finger of THAP1, a Large C2CH DNA-binding Module Linked to Rb/E2F Pathways. Journal of Biological Chemistry, 2008, 283, 4352-4363.	3.4	76

#	Article	IF	CITATIONS
19	The Dual Function of the Mycobacterium tuberculosis FadD32 Required for Mycolic Acid Biosynthesis. Chemistry and Biology, 2009, 16, 510-519.	6.0	76
20	Crystal Structure of the CheA Histidine Phosphotransfer Domain that Mediates Response Regulator Phosphorylation in Bacterial Chemotaxis. Journal of Biological Chemistry, 2001, 276, 31074-31082.	3.4	75
21	Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid-binding groove of CD1b. EMBO Journal, 2006, 25, 3684-3692.	7.8	75
22	Antithrombin III: structural and functional aspects. Biochimie, 1990, 72, 599-608.	2.6	72
23	Further Insight into S-Adenosylmethionine-dependent Methyltransferases. Journal of Biological Chemistry, 2006, 281, 4434-4445.	3.4	67
24	Fatty Acyl Structures of Mycobacterium tuberculosis Sulfoglycolipid Govern T Cell Response. Journal of Immunology, 2009, 182, 7030-7037.	0.8	63
25	4′-Phosphopantetheinyl Transferase PptT, a New Drug Target Required for Mycobacterium tuberculosis Growth and Persistence In Vivo. PLoS Pathogens, 2012, 8, e1003097.	4.7	63
26	Phosphorylation of KasB Regulates Virulence and Acid-Fastness in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004115.	4.7	63
27	Characterization and sugar-binding properties of arcelin-1, an insecticidal lectin-like protein isolated from kidney bean (Phaseolus vulgaris L. cv. RAZ-2) seeds. Biochemical Journal, 1998, 329, 551-560.	3.7	62
28	Electrostatic analysis of TEM1 β-lactamase: effect of substrate binding, steep potential gradients and consequences of site-directed mutations. Structure, 1995, 3, 603-613.	3.3	60
29	Phosphorylation of Mycobacterial PcaA Inhibits Mycolic Acid Cyclopropanation. Journal of Biological Chemistry, 2012, 287, 26187-26199.	3.4	56
30	Structural Investigation of the Thermostability and Product Specificity of Amylosucrase from the Bacterium Deinococcus geothermalis. Journal of Biological Chemistry, 2012, 287, 6642-6654.	3.4	55
31	Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17755-17760.	7.1	52
32	Structural transitions in the FixJ receiver domain. Structure, 1999, 7, 1517-1526.	3.3	51
33	New Insights on the Mechanism of Quinoline-based DNA Methyltransferase Inhibitors. Journal of Biological Chemistry, 2015, 290, 6293-6302.	3.4	50
34	Applying Pairwise Combinations of Amino Acid Mutations for Sorting Out Highly Efficient Glucosylation Tools for Chemo-Enzymatic Synthesis of Bacterial Oligosaccharides. Journal of the American Chemical Society, 2012, 134, 18677-18688.	13.7	48
35	Inhibition of the NMC-A β-Lactamase by a Penicillanic Acid Derivative and the Structural Bases for the Increase in Substrate Profile of This Antibiotic Resistance Enzyme. Journal of the American Chemical Society, 1998, 120, 9382-9383.	13.7	47
36	Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes. Proceedings of the United States of America, 2011, 108, 13230-13235.	7.1	47

#	Article	lF	CITATIONS
37	First Structural Insights into α-l-Arabinofuranosidases from the Two GH62 Glycoside Hydrolase Subfamilies. Journal of Biological Chemistry, 2014, 289, 5261-5273.	3.4	45
38	Discoupling the Ca2+-activation from the pore-forming function of the bi-component Panton-Valentine leucocidin in human PMNs. FEBS Letters, 1999, 461, 280-286.	2.8	39
39	The molecular puzzle of two-component signaling cascades. Microbes and Infection, 2001, 3, 417-424.	1.9	39
40	Biochemical and Structural Study of the Atypical Acyltransferase Domain from the Mycobacterial Polyketide Synthase Pks13. Journal of Biological Chemistry, 2012, 287, 33675-33690.	3.4	39
41	The Membrane-associated Form of the DNA Repair Protein Ku is Involved in Cell Adhesion to Fibronectin. Journal of Molecular Biology, 2004, 337, 503-511.	4.2	38
42	Chaperone addiction of toxin–antitoxin systems. Nature Communications, 2016, 7, 13339.	12.8	38
43	Crystal Structure of the Arcelin-1 Dimer fromPhaseolus vulgarisat 1.9-Ã Resolution. Journal of Biological Chemistry, 1998, 273, 12914-12922.	3.4	36
44	Structural basis for sugar recognition, including the Tn carcinoma antigen, by the lectin SNAâ€II from <i>Sambucus nigra</i> . Proteins: Structure, Function and Bioinformatics, 2009, 75, 89-103.	2.6	33
45	Natural disease history and characterisation of SUMF1 molecular defects in ten unrelated patients with multiple sulfatase deficiency. Orphanet Journal of Rare Diseases, 2015, 10, 31.	2.7	33
46	Structural Basis of Extended Spectrum TEM β-Lactamases. Journal of Biological Chemistry, 1996, 271, 10482-10489.	3.4	32
47	Assay Development for Identifying Inhibitors of the Mycobacterial FadD32 Activity. Journal of Biomolecular Screening, 2013, 18, 576-587.	2.6	31
48	Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. Journal of Structural Biology, 2015, 190, 328-337.	2.8	31
49	Experimental mapping of soluble protein domains using a hierarchical approach. Nucleic Acids Research, 2011, 39, e125-e125.	14.5	29
50	Engineered covalent leucotoxin heterodimers form functional pores: insights into S–F interactions. Biochemical Journal, 2006, 396, 381-389.	3.7	28
51	A covalent Sâ€F heterodimer of leucotoxin reveals molecular plasticity of βâ€barrel poreâ€forming toxins. Proteins: Structure, Function and Bioinformatics, 2008, 71, 485-496.	2.6	28
52	S-Adenosyl-N-decyl-aminoethyl, a Potent Bisubstrate Inhibitor of Mycobacterium tuberculosis Mycolic Acid Methyltransferases. Journal of Biological Chemistry, 2009, 284, 19321-19330.	3.4	28
53	Insights into Substrate Modification by Dehydratases from Type I Polyketide Synthases. Journal of Molecular Biology, 2017, 429, 1554-1569.	4.2	24
54	Structural Insights into the Carbohydrate Binding Ability of an α-(1→2) Branching Sucrase from Glycoside Hydrolase Family 70. Journal of Biological Chemistry, 2016, 291, 7527-7540.	3.4	23

#	Article	IF	CITATIONS
55	Phthiocerol Dimycocerosates From Mycobacterium tuberculosis Increase the Membrane Activity of Bacterial Effectors and Host Receptors. Frontiers in Cellular and Infection Microbiology, 2020, 10, 420.	3.9	23
56	Selectivity in substitution chemistry of mixed-metal, tetrahedral MCo3 (M = iron, ruthenium) carbonyl clusters: cobalt-59 NMR study and crystal structure of RuCo3(.mu.3-H)(.muCO)3(CO)8(NMe3). Organometallics, 1992, 11, 2628-2634.	2.3	22
57	Further insights into the mechanism of function of the response regulator CheY from crystallographic studies of the CheY–CheA124–257complex. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 44-51.	2.5	22
58	Insight into Structure-Function Relationships and Inhibition of the Fatty Acyl-AMP Ligase (FadD32) Orthologs from Mycobacteria. Journal of Biological Chemistry, 2016, 291, 7973-7989.	3.4	22
59	Inhibition of the Broad Spectrum Nonmetallocarbapenamase of Class A (NMC-A) β-Lactamase from Enterobacter cloacae by Monocyclic β-Lactams. Journal of Biological Chemistry, 1999, 274, 25260-25265.	3.4	20
60	Residues Essential for Panton-Valentine Leukocidin S Component Binding to Its Cell Receptor Suggest Both Plasticity and Adaptability in Its Interaction Surface. PLoS ONE, 2014, 9, e92094.	2.5	20
61	Occurrence and stability of hetero-hexamer associations formed by β-carboxysome CcmK shell components. PLoS ONE, 2019, 14, e0223877.	2.5	20
62	6-(Hydroxyalkyl)penicillanates as Probes for Mechanisms of .BETALactamases Journal of Antibiotics, 2000, 53, 1022-1027.	2.0	19
63	Crystal structure of bovine antithrombin III. Acta Crystallographica Section B: Structural Science, 1990, 46, 550-556.	1.8	18
64	Structural bases for N-glycan processing by mannoside phosphorylase. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1335-1346.	2.5	18
65	Crystallization and preliminary crystallographic data for bovine antithrombin III. Journal of Molecular Biology, 1989, 210, 877-879.	4.2	17
66	Directed evolution of SecB chaperones toward toxin-antitoxin systems. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12584-12589.	7.1	15
67	Structural insights into chaperone addiction of toxin-antitoxin systems. Nature Communications, 2019, 10, 782.	12.8	15
68	Ser/Thr Phosphorylation Regulates the Fatty Acyl-AMP Ligase Activity of FadD32, an Essential Enzyme in Mycolic Acid Biosynthesis. Journal of Biological Chemistry, 2016, 291, 22793-22805.	3.4	14
69	Small-Angle x-ray scattering and crystallographic studies of arcelin-1: An insecticidal lectin-like glycoprotein fromPhaseolus vulgaris L. , 1997, 29, 433-442.		13
70	Distinction between Pore Assembly by Staphylococcalα-Toxin versus Leukotoxins. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-13.	3.0	13
71	Virtual and Biophysical Screening Targeting the γ-Tubulin Complex – A New Target for the Inhibition of Microtubule Nucleation. PLoS ONE, 2013, 8, e63908.	2.5	13
72	Cell transfection of purified cytolethal distending toxin B subunits allows comparing their nuclease activity while plasmid degradation assay does not. PLoS ONE, 2019, 14, e0214313.	2.5	11

#	Article	IF	CITATIONS
73	Crystal structure of the F component of the Panton-Valentine leucocidin. International Journal of Medical Microbiology, 2000, 290, 395-401.	3.6	10
74	Crystallization and preliminary crystallographic data of a leucotoxin S component fromStaphylococcus aureus. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 310-313.	2.5	10
75	Detection of soluble co-factor dependent protein expression in vivo : Application to the 4′-phosphopantetheinyl transferase PptT from Mycobacterium tuberculosis. Journal of Structural Biology, 2013, 183, 320-328.	2.8	10
76	Oligomeric structure of the repressor of the bacteriophage Mu early operon. FEBS Journal, 1998, 252, 408-415.	0.2	9
77	NMR secondary structure and interactions of recombinant human MOZART1 protein, a component of the gammaâ€ŧubulin complex. Protein Science, 2017, 26, 2240-2248.	7.6	8
78	Fine-tuning of intrinsic N-Oct-3 POU domain allostery by regulatory DNA targets. Nucleic Acids Research, 2007, 35, 4420-4432.	14.5	7
79	Alpha-helix and beta-barrel pore-forming toxins (leucocidins, alpha-, gamma-, and delta-cytolysins) of Staphylococcus aureus. , 2006, , 590-607.		5
80	Crystallization and preliminary crystallographic studies of both components of the staphylococcal LukE–LukD leukotoxin. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 663-667.	0.7	5
81	Substrate recognition and cryo-EM structure of the ribosome-bound TAC toxin of Mycobacterium tuberculosis. Nature Communications, 2022, 13, 2641.	12.8	5
82	Solution structure of the type I polyketide synthase Pks13 from Mycobacterium tuberculosis. BMC Biology, 2022, 20, .	3.8	5
83	Urea derivatives carrying a thiophenylthiazole moiety: Design, synthesis, and evaluation of antitubercular and InhA inhibitory activities. Drug Development Research, 2022, 83, 1292-1304.	2.9	5
84	Conformational flexibility of coenzyme A and its impact on the postâ€translational modification of acyl carrier proteins by 4′â€phosphopantetheinyl transferases. FEBS Journal, 2020, 287, 4729-4746.	4.7	4
85	Molecular Basis for Extender Unit Specificity of Mycobacterial Polyketide Synthases. ACS Chemical Biology, 2020, 15, 3206-3216.	3.4	2
86	Phosphopantetheinyl transferase binding and inhibition by amidino-urea and hydroxypyrimidinethione compounds. Scientific Reports, 2021, 11, 18042.	3.3	2
87	Crystallographic studies of the structured core domain of Knr4 from <i>Saccharomyces cerevisiae</i> . Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1120-1124.	0.8	2
88	Bioinformatic Mining and Structure-Activity Profiling of Baeyer-Villiger Monooxygenases from Mycobacterium tuberculosis. MSphere, 2022, , e0048221.	2.9	2
89	Fragment-Based Ligand Discovery Applied to the Mycolic Acid Methyltransferase Hma (MmaA4) from Mycobacterium tuberculosis: A Crystallographic and Molecular Modelling Study. Pharmaceuticals, 2021, 14, 1282.	3.8	2
90	Antibacterials as wonder drugs and how their effectiveness is being compromised. Pharmacochemistry Library, 2002, 32, 193-205.	0.1	0

#	Article	IF	CITATIONS
91	Title is missing!. , 2019, 14, e0223877.		0
92	Title is missing!. , 2019, 14, e0223877.		0
93	Title is missing!. , 2019, 14, e0223877.		0
94	Title is missing!. , 2019, 14, e0223877.		0