
Eyal Kurzbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6347613/publications.pdf Version: 2024-02-01

EVAL KUDZRALIM

#	Article	IF	CITATIONS
1	The Partial Contribution of Constructed Wetland Components (Roots, Gravel, Microorganisms) in the Removal of Phenols: A Mini Review. Water (Switzerland), 2022, 14, 626.	1.2	4
2	Efficient biodegradation of phenol at high concentrations by Acinetobacter biofilm at extremely short hydraulic retention times. Journal of Water Process Engineering, 2022, 47, 102781.	2.6	10
3	Advanced oxidation process UV-H2O2 combined with biological treatment for the removal and detoxification of phenol. Journal of Water Process Engineering, 2022, 48, 102923.	2.6	11
4	Structural properties of a biotechnological capsule confined by a <scp>3D ellulose acetate</scp> membrane. Polymers for Advanced Technologies, 2021, 32, 681-689.	1.6	6
5	Chemical Decolorization of Textile Wastewater Via Advanced Oxidation Processes: Case Study of Key Parameters with Acid Blue 25. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	6
6	UV-LED Combined with Small Bioreactor Platform (SBP) for Degradation of 17α-Ethynylestradiol (EE2) at Very Short Hydraulic Retention Time. Materials, 2021, 14, 5960.	1.3	2
7	Nitrate removal from a nitrate-rich reverse osmosis concentrate: Superior efficiency using the bioaugmentation of an Acinetobacter biofilm. Journal of Water Process Engineering, 2021, 44, 102425.	2.6	14
8	Phenol biodegradation by bacterial cultures encapsulated in 3D microfiltration-membrane capsules. Environmental Technology (United Kingdom), 2020, 41, 2875-2883.	1.2	12
9	LP-UV-Nano MgO2 Pretreated Catalysis Followed by Small Bioreactor Platform Capsules Treatment for Superior Kinetic Degradation Performance of 17î±-Ethynylestradiol. Materials, 2020, 13, 83.	1.3	7
10	A New Acinetobacter Isolate Is an Extremely Efficient Biofilm-Formative Denitrifying Bacterium. Frontiers in Environmental Science, 2020, 8, .	1.5	16
11	Small bioreactor platform capsules provide persistent digestive biomass for continuous bioreactors operated under short hydraulic retention times. Journal of Water Process Engineering, 2020, 37, 101516.	2.6	8
12	Biodegradation of the Endocrine-Disrupting Chemical 17α-Ethynylestradiol (EE2) by Rhodococcus zopfii and Pseudomonas putida Encapsulated in Small Bioreactor Platform (SBP) Capsules. Applied Sciences (Switzerland), 2020, 10, 336.	1.3	22
13	Preparing Xanthan hitosan Composites in Glycerol. ChemistrySelect, 2019, 4, 6451-6457.	0.7	2
14	Rainâ€based soil solarization for reducing the persistent seed banks of invasive plants in natural ecosystems – Acacia saligna as a model. Pest Management Science, 2019, 75, 1933-1941.	1.7	6
15	From the Titanic and other shipwrecks to biofilm prevention: The interesting role of polyphenol-protein complexes in biofilm inhibition. Science of the Total Environment, 2019, 658, 1098-1105.	3.9	27
16	Diurnal changes in the delayed fluorescence response of an ambient light-excited green alga. Photosynthetica, 2019, 57, 40-46.	0.9	0
17	Controlling the seed bank of the invasive plant Acacia saligna: comparison of the efficacy of prescribed burning, soil solarization, and their combination. Biological Invasions, 2018, 20, 2875-2887.	1.2	13
18	Facilitated enumeration of the silicate bacterium Paenibacillus mucilaginosus comb. nov. (formerly) Tj ETQq0 0 C) rgBT /Ov 1.1	erlock 10 Tf 5 7

growth medium. Folia Microbiologica, 2018, 63, 401-404.

Eyal Kurzbaum

#	Article	IF	CITATIONS
19	Treatment of olive mill wastewater using ozonation followed by an encapsulated acclimated biomass. Journal of Environmental Chemical Engineering, 2018, 6, 5014-5023.	3.3	31
20	Extracellular laccase production and phenolic degradation by an olive mill wastewater isolate. Grasas Y Aceites, 2018, 69, 231.	0.3	4
21	Encapsulated Pseudomonas putida for phenol biodegradation: Use of a structural membrane for construction of a well-organized confined particle. Water Research, 2017, 121, 37-45.	5.3	65
22	Lanthanum-modified bentonite: potential for efficient removal of phosphates from fishpond effluents. Environmental Science and Pollution Research, 2017, 24, 15182-15186.	2.7	12
23	Aspects of carbon dioxide mitigation in a closed microalgae photo-bioreactor supplied with flue gas. International Journal of Environment and Pollution, 2017, 62, 1.	0.2	2
24	Aspects of carbon dioxide mitigation in a closed microalgae photo-bioreactor supplied with flue gas. International Journal of Environment and Pollution, 2017, 62, 1.	0.2	3
25	Performance comparison of plant root biofilm, gravel attached biofilm and planktonic microbial populations, in phenol removal within a constructed wetland wastewater treatment system. Water S A, 2016, 42, 166.	0.2	8
26	A novel bioaugmentation treatment approach using a confined microbial environment: a case study in a Membrane Bioreactor wastewater treatment plant. Environmental Technology (United Kingdom), 2016, 37, 1582-1590.	1.2	12
27	The potential of phosphate removal from dairy wastewater and municipal wastewater effluents using a lanthanum-modified bentonite. Applied Clay Science, 2016, 123, 182-186.	2.6	34
28	The potential of autochthonous microbial culture encapsulation in a confined environment for phenol biodegradation. Environmental Science and Pollution Research, 2015, 22, 15179-15187.	2.7	15
29	Small-bioreactor platform technology as a municipal wastewater additive treatment. Water Science and Technology, 2014, 69, 504-510.	1.2	18
30	A Hydroponic System for Growing Gnotobiotic Vs. Sterile Plants to Study Phytoremediation Processes. International Journal of Phytoremediation, 2014, 16, 267-274.	1.7	4
31	Improvement of water quality using constructed wetland systems. Reviews on Environmental Health, 2012, 27, 59-64.	1.1	16
32	Removal of phenol in a constructed wetland system and the relative contribution of plant roots, microbial activity and porous bed. Water Science and Technology, 2010, 62, 1327-1334.	1.2	17
33	Alterations in delayed and direct phytoplankton fluorescence in response to the diurnal light cycle. Hydrobiologia, 2010, 639, 197-203.	1.0	7
34	Isolation of a Halotolerant Streptomyces sp. from a Constructed Wetland that Biodegrade Phenol and Various Biopolymers. Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2010, 24, 31-38.	0.3	9
35	A simple method for dehydrogenase activity visualization of intact plant roots grown in soilless culture using tetrazolium violet. Plant Root, 2010, 4, 12-16.	0.3	10
36	Combined Chemical-Biological Treatment for Prevention/Rehabilitation of Clogged Wells by an Iron-Oxidizing Bacterium. Environmental Science & Technology, 2010, 44, 3123-3129.	4.6	23

#	Article	IF	CITATIONS
37	Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed) Tj ETQq1 1	0.784314	rgBT_/Overloc
38	Delayed fluorescence as a direct indicator of diurnal variation in quantum and radiant energy utilization efficiencies of phytoplankton. Photosynthetica, 2007, 45, 562-567.	0.9	14