
Paul E Sawchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6347236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, 1983, 304, 129-135.	13.7	2,288
2	Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature, 1995, 378, 287-292.	13.7	1,458
3	Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. Journal of Comparative Neurology, 2000, 428, 191-212.	0.9	948
4	Corticotropin Releasing Factor Receptor 1–Deficient Mice Display Decreased Anxiety, Impaired Stress Response, and Aberrant Neuroendocrine Development. Neuron, 1998, 20, 1093-1102.	3.8	839
5	Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nature Genetics, 2000, 24, 410-414.	9.4	792
6	Regional Differentiation of the Medial Prefrontal Cortex in Regulating Adaptive Responses to Acute Emotional Stress. Journal of Neuroscience, 2006, 26, 12967-12976.	1.7	410
7	Urocortin Expression in Rat Brain: Evidence Against a Pervasive Relationship of Urocortin-Containing Projections With Targets Bearing Type 2 CRF Receptors. Journal of Comparative Neurology, 1999, 415, 285-312.	0.9	337
8	Do Centrally Administered Neuropeptides Access Cognate Receptors?: An Analysis in the Central Corticotropin-Releasing Factor System. Journal of Neuroscience, 2000, 20, 1142-1156.	1.7	320
9	Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Progress in Brain Research, 2000, 122, 61-78.	0.9	299
10	Urocortin III-Immunoreactive Projections in Rat Brain: Partial Overlap with Sites of Type 2 Corticotrophin-Releasing Factor Receptor Expression. Journal of Neuroscience, 2002, 22, 991-1001.	1.7	226
11	Bone Marrow-Derived Cells that Populate the Adult Mouse Brain Preserve Their Hematopoietic Identity. Journal of Neuroscience, 2003, 23, 5197-5207.	1.7	220
12	Corticotropin Releasing Factor (CRF) Binding Protein: A Novel Regulator of CRF and Related Peptides. Frontiers in Neuroendocrinology, 1995, 16, 362-382.	2.5	218
13	Dual Roles for Perivascular Macrophages in Immune-to-Brain Signaling. Neuron, 2010, 65, 94-106.	3.8	214
14	A Common Substrate for Prefrontal and Hippocampal Inhibition of the Neuroendocrine Stress Response. Journal of Neuroscience, 2011, 31, 9683-9695.	1.7	210
15	Organization and Transmitter Specificity of Medullary Neurons Activated by Sustained Hypertension: Implications for Understanding Baroreceptor Reflex Circuitry. Journal of Neuroscience, 1998, 18, 371-387.	1.7	208
16	Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. Journal of Comparative Neurology, 2007, 502, 236-260.	0.9	186
17	Distinct Brain Vascular Cell Types Manifest Inducible Cyclooxygenase Expression as a Function of the Strength and Nature of Immune Insults. Journal of Neuroscience, 2002, 22, 5606-5618.	1.7	172
18	Distribution of the EP3 prostaglandin E2 receptor subtype in the rat brain: Relationship to sites of interleukin-1-induced cellular responsiveness. Journal of Comparative Neurology, 2000, 428, 5-20.	0.9	166

PAUL E SAWCHENKO

#	Article	IF	CITATIONS
19	Cellular and Molecular Bases of the Initiation of Fever. PLoS Biology, 2006, 4, e284.	2.6	160
20	Type 1 corticotropinâ€releasing factor receptor expression reported in BAC transgenic mice: Implications for reconciling ligandâ€receptor mismatch in the central corticotropinâ€releasing factor system. Journal of Comparative Neurology, 2008, 511, 479-496.	0.9	150
21	Hypophysiotropic neurons of the paraventricular nucleus respond in spatially, temporally, and phenotypically differentiated manners to acute vs. repeated restraint stress: Rapid publication. Journal of Comparative Neurology, 2002, 445, 293-307.	0.9	145
22	Categorically Distinct Acute Stressors Elicit Dissimilar Transcriptional Profiles in the Paraventricular Nucleus of the Hypothalamus. Journal of Neuroscience, 2003, 23, 5607-5616.	1.7	136
23	Corticotropin-Releasing Factor Receptors Differentially Regulate Stress-Induced Tau Phosphorylation. Journal of Neuroscience, 2007, 27, 6552-6562.	1.7	135
24	A method for anterograde axonal tracing of chemically specified circuits in the central nervous system: combinedPhaseolus vulgaris-leucoagglutinin (PHA-L) tract tracing and immunohistochemistry. Brain Research, 1985, 343, 144-150.	1.1	117
25	Noradrenergic Innervation of the Dorsal Medial Prefrontal Cortex Modulates Hypothalamo-Pituitary-Adrenal Responses to Acute Emotional Stress. Journal of Neuroscience, 2008, 28, 5806-5816.	1.7	117
26	Central neural control of esophageal motility: A review. Dysphagia, 1990, 5, 35-51.	1.0	115
27	Signaling the brain in systemic inflammation the role of perivascular cells. Frontiers in Bioscience - Landmark, 2003, 8, s1321-1329.	3.0	107
28	Immune cell trafficking from the brain maintains CNS immune tolerance. Journal of Clinical Investigation, 2014, 124, 1228-1241.	3.9	105
29	A soluble mouse brain splice variant of type 2Â corticotropin-releasing factor (CRF) receptor binds ligands and modulates their activity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2620-2625.	3.3	89
30	Human Urocortin II, a Selective Agonist for the Type 2 Corticotropin-Releasing Factor Receptor, Decreases Feeding and Drinking in the Rat. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 385-393.	1.3	85
31	Dorsal medullary pathways subserving oromotor reflexes in the rat: Implications for the central neural control of swallowing. Journal of Comparative Neurology, 2000, 417, 448-466.	0.9	84
32	Corticotropin-releasing factor receptor-dependent effects of repeated stress on tau phosphorylation, solubility, and aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6277-6282.	3.3	83
33	Cerebrovascular Cyclooxygenase-1 Expression, Regulation, and Role in Hypothalamic-Pituitary-Adrenal Axis Activation by Inflammatory Stimuli. Journal of Neuroscience, 2009, 29, 12970-12981.	1.7	74
34	Specificity and generality of the involvement of catecholaminergic afferents in hypothalamic responses to immune insults. Journal of Comparative Neurology, 2007, 502, 455-467.	0.9	67
35	Loss of Modifier of Cell Adhesion Reveals a Pathway Leading to Axonal Degeneration. Journal of Neuroscience, 2009, 29, 118-130.	1.7	67
36	Toward a new neurobiology of energy balance, appetite, and obesity: the anatomists weigh in. Journal of Comparative Neurology, 1998, 402, 435-41.	0.9	63

#	Article	IF	CITATIONS
37	Evidence for involvement of a limbic paraventricular hypothalamic inhibitory network in hypothalamicâ€pituitaryâ€adrenal axis adaptations to repeated stress. Journal of Comparative Neurology, 2015, 523, 2769-2787.	0.9	58
38	Paradoxical activational effects of a corticotropin-releasing factor-binding protein "ligand inhibitor―in rat brain. Neuroscience, 2000, 101, 115-129.	1.1	52
39	Corticotropinâ€releasing factor receptorâ€1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 527-537.	0.4	45
40	Ovine genomic urocortin: cloning, pharmacologic characterization, and distribution of central mRNA. Molecular Brain Research, 1999, 68, 109-118.	2.5	36
41	CNS activational responses to staphylococcal enterotoxin B: T-lymphocyte-dependent immune challenge effects on stress-related circuitry. Journal of Comparative Neurology, 2006, 495, 236-254.	0.9	36
42	Fine structure and plasticity of barosensitive neurons in the nucleus of solitary tract. Journal of Comparative Neurology, 2000, 422, 338-351.	0.9	33
43	Ultrastructural localization of the corticotropin-releasing factor-binding protein in rat brain and pituitary. , 1999, 413, 241-254.		32
44	Antibodies to the RNA-binding protein hnRNP A1 contribute to neurodegeneration in a model of central nervous system autoimmune inflammatory disease. Journal of Neuroinflammation, 2016, 13, 178.	3.1	30
45	Effects of gastric vs complete subdiaphragmatic vagotomy on hypothalamic hyperphagia and obesity. Physiology and Behavior, 1981, 26, 281-292.	1.0	27
46	Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy. International Journal of Molecular Sciences, 2013, 14, 547-562.	1.8	24
47	Pro-inflammatory immune-to-brain signaling is involved in neuroendocrine responses to acute emotional stress. Brain, Behavior, and Immunity, 2017, 62, 53-63.	2.0	24
48	Modulatory Actions of Corticotropin-releasing Factor-binding Proteina. Annals of the New York Academy of Sciences, 1996, 780, 81-95.	1.8	23
49	CCAAT/Enhancer Binding Protein-δ Expression by Dendritic Cells Regulates CNS Autoimmune Inflammatory Disease. Journal of Neuroscience, 2011, 31, 17612-17621.	1.7	21
50	Distribution of corticotropinâ€releasing factor (CRF) receptor binding in the mouse brain using a new, highâ€affinity radioligand, [¹²⁵ I]â€PDâ€Sauvagine. Journal of Comparative Neurology, 2017, 525, 3840-3864.	0.9	16
51	Urocortin Expression in Rat Brain: Evidence Against a Pervasive Relationship of Urocortin ontaining Projections With Targets Bearing Type 2 CRF Receptors. Journal of Comparative Neurology, 1999, 415, 285-312.	0.9	15
52	How T-cell-dependent and -independent challenges access the brain: Vascular and neural responses to bacterial lipopolysaccharide and staphylococcal enterotoxin B. Brain, Behavior, and Immunity, 2009, 23, 1038-1052.	2.0	14
53	Characterization of a <i>Pachymedusa dacnicolor</i> –Sauvagine Analog as a New High-Affinity Radioligand for Corticotropin-Releasing Factor Receptor Studies. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 307-317.	1.3	5
54	Dorsal medullary pathways subserving oromotor reflexes in the rat: Implications for the central neural control of swallowing. Journal of Comparative Neurology, 2000, 417, 448.	0.9	2

#	Article	IF	CITATIONS
55	Urocortin Expression in Rat Brain: Evidence Against a Pervasive Relationship of Urocortin-Containing Projections With Targets Bearing Type 2 CRF Receptors. , 1999, 415, 285.		1