Coleen T Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6347166/publications.pdf

Version: 2024-02-01

84 papers 9,894 citations

⁷⁶¹⁹⁶
40
h-index

78 g-index

112 all docs

112 docs citations

112 times ranked

8806 citing authors

#	Article	IF	CITATIONS
1	Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 2003, 424, 277-283.	13.7	1,998
2	Regulation of Aging and Age-Related Disease by DAF-16 and Heat-Shock Factor. Science, 2003, 300, 1142-1145.	6.0	1,346
3	Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nature Genetics, 2004, 36, 197-204.	9.4	434
4	Insulin/insulin-like growth factor signaling in C. elegans. WormBook, 2013, , 1-43.	5. 3	401
5	Conditionâ€adapted stress and longevity gene regulation by <i>Caenorhabditis elegans</i> SKNâ€1/Nrf. Aging Cell, 2009, 8, 524-541.	3.0	302
6	Glucose Shortens the Life Span of C. elegans by Downregulating DAF-16/FOXO Activity and Aquaporin Gene Expression. Cell Metabolism, 2009, 10, 379-391.	7.2	299
7	PQM-1 Complements DAF-16 as a Key Transcriptional Regulator of DAF-2-Mediated Development and Longevity. Cell, 2013, 154, 676-690.	13.5	270
8	Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature, 2015, 519, 97-101.	13.7	251
9	The C. elegans TGF-Î ² Dauer Pathway Regulates Longevity via Insulin Signaling. Current Biology, 2007, 17, 1635-1645.	1.8	242
10	TGF- \hat{l}^2 and Insulin Signaling Regulate Reproductive Aging via Oocyte and Germline Quality Maintenance. Cell, 2010, 143, 299-312.	13.5	238
11	Insulin Signaling and Dietary Restriction Differentially Influence the Decline of Learning and Memory with Age. PLoS Biology, 2010, 8, e1000372.	2.6	223
12	Piwi/PRG-1 Argonaute and TGF- \hat{l}^2 Mediate Transgenerational Learned Pathogenic Avoidance. Cell, 2019, 177, 1827-1841.e12.	13.5	199
13	The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators. Nature, 2016, 529, 92-96.	13.7	196
14	C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nature Communications, 2015, 6, 8919.	5.8	182
15	The search for DAF-16/FOXO transcriptional targets: Approaches and discoveries. Experimental Gerontology, 2006, 41, 910-921.	1.2	161
16	Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of <i>Caenorhabditis elegans</i> Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19046-19050.	3.3	155
17	Transcriptome analysis of adult Caenorhabditis elegans cells reveals tissue-specific gene and isoform expression. PLoS Genetics, 2018, 14, e1007559.	1.5	151
18	The cell biology of aging. Molecular Biology of the Cell, 2015, 26, 4524-4531.	0.9	139

#	Article	IF	CITATIONS
19	Mating Induces Shrinking and Death in <i>Caenorhabditis</i> /i> Mothers. Science, 2014, 343, 536-540.	6.0	127
20	TGF-ß Sma/Mab Signaling Mutations Uncouple Reproductive Aging from Somatic Aging. PLoS Genetics, 2009, 5, e1000789.	1.5	125
21	C.Âelegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature, 2020, 586, 445-451.	13.7	124
22	Genome-wide Functional Analysis of CREB/Long-Term Memory-Dependent Transcription Reveals Distinct Basal and Memory Gene Expression Programs. Neuron, 2015, 85, 330-345.	3.8	122
23	Regulation of reproduction and longevity by nutrient-sensing pathways. Journal of Cell Biology, 2018, 217, 93-106.	2.3	118
24	The Evolutionarily Conserved Longevity Determinants HCF-1 and SIR-2.1/SIRT1 Collaborate to Regulate DAF-16/FOXO. PLoS Genetics, 2011, 7, e1002235.	1.5	106
25	Metformin rescues Parkinson's disease phenotypes caused by hyperactive mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26438-26447.	3.3	95
26	EGF signalling activates the ubiquitin proteasome system to modulate C. elegans lifespan. EMBO Journal, 2011, 30, 2990-3003.	3.5	90
27	An Insulin-to-Insulin Regulatory Network Orchestrates Phenotypic Specificity in Development and Physiology. PLoS Genetics, 2014, 10, e1004225.	1.5	90
28	Dictyostelium Myosin 25-50K Loop Substitutions Specifically Affect ADP Release Rates. Biochemistry, 1998, 37, 6738-6744.	1.2	87
29	Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression. Cell Reports, 2016, 15, 1580-1596.	2.9	85
30	The role of insulin/IGF-like signaling in <i>C. elegans</i> longevity and aging. DMM Disease Models and Mechanisms, 2010, 3, 415-419.	1.2	84
31	Global Prediction of Tissue-Specific Gene Expression and Context-Dependent Gene Networks in Caenorhabditis elegans. PLoS Computational Biology, 2009, 5, e1000417.	1.5	84
32	The Sequence of the Myosin 50â^'20K Loop Affects Myosin's Affinity for Actin throughout the Actinâ^'Myosin ATPase Cycle and Its Maximum ATPase Activityâ€. Biochemistry, 1999, 38, 3785-3792.	1.2	83
33	Integration of diverse inputs in the regulation of <i>Caenorhabditis elegans</i> DAFâ€16/FOXO. Developmental Dynamics, 2010, 239, 1405-1412.	0.8	77
34	Cell-Specific Transcriptional Profiling of Ciliated Sensory Neurons Reveals Regulators of Behavior and Extracellular Vesicle Biogenesis. Current Biology, 2015, 25, 3232-3238.	1.8	75
35	A myosin II mutation uncouples ATPase activity from motility and shortens step size. Nature Cell Biology, 2001, 3, 311-315.	4.6	73
36	 C. elegans Positive Butanone Learning, Short-term, and Long-term Associative Memory Assays. Journal of Visualized Experiments, $2011, \ldots$	0.2	64

#	Article	IF	Citations
37	Caenorhabditis elegans sperm carry a histone-based epigenetic memory of both spermatogenesis and oogenesis. Nature Communications, 2018, 9, 4310.	5.8	63
38	RNA surveillance via nonsense-mediated mRNA decay is crucial for longevity in daf-2/insulin/IGF-1 mutant C. elegans. Nature Communications, 2017, 8, 14749.	5 . 8	59
39	Mating and male pheromone kill Caenorhabditis males through distinct mechanisms. ELife, 2017, 6, .	2.8	57
40	An integrative tissue-network approach to identify and test human disease genes. Nature Biotechnology, 2018, 36, 1091-1099.	9.4	54
41	The Neuronal Kinesin UNC-104/KIF1A Is a Key Regulator of Synaptic Aging and Insulin Signaling-Regulated Memory. Current Biology, 2016, 26, 605-615.	1.8	49
42	Variable surface loops and myosin activity: accessories to a motor., 2000, 21, 139-151.		45
43	C. elegans positive olfactory associative memory is a molecularly conserved behavioral paradigm. Neurobiology of Learning and Memory, 2014, 115, 86-94.	1.0	45
44	Insulin Signaling Regulates Oocyte Quality Maintenance with Age via Cathepsin B Activity. Current Biology, 2018, 28, 753-760.e4.	1.8	45
45	The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell, 2021, 184, 4697-4712.e18.	13.5	41
46	<i>Caenorhabditis elegans</i> reproductive aging: Regulation and underlying mechanisms. Genesis, 2011, 49, 53-65.	0.8	40
47	The Intersection of Aging, Longevity Pathways, and Learning and Memory in C. elegans. Frontiers in Genetics, 2012, 3, 259.	1.1	39
48	A microfluidic device and automatic counting system for the study of C. elegans reproductive aging. Lab on A Chip, 2015, 15, 524-531.	3.1	38
49	The nematode Caenorhabditis elegans as a model for aging research. Drug Discovery Today: Disease Models, 2018, 27, 3-13.	1.2	38
50	Activation of $\widehat{Gl}\pm q$ Signaling Enhances Memory Consolidation and Slows Cognitive Decline. Neuron, 2018, 98, 562-574.e5.	3.8	35
51	Conserved regulators of cognitive aging: From worms to humans. Behavioural Brain Research, 2017, 322, 299-310.	1.2	31
52	The endocrine regulation of aging in Caenorhabditis elegans. Molecular and Cellular Endocrinology, 2009, 299, 51-57.	1.6	27
53	A New System for Comparative Functional Genomics of <i>Saccharomyces</i> Yeasts. Genetics, 2013, 195, 275-287.	1.2	27
54	CREB Non-autonomously Controls Reproductive Aging through Hedgehog/Patched Signaling. Developmental Cell, 2020, 54, 92-105.e5.	3.1	26

#	Article	IF	Citations
55	Insulin-like peptides and the mTOR-TFEB pathway protect Caenorhabditis elegans hermaphrodites from mating-induced death. ELife, 2019, 8, .	2.8	24
56	High-throughput behavioral screen in C. elegans reveals Parkinson's disease drug candidates. Communications Biology, 2021, 4, 203.	2.0	23
57	Enrichment of regulatory motifs upstream of predicted DAF-16 targets. Nature Genetics, 2006, 38, 397-398.	9.4	22
58	Reduced insulin/IGF1 signaling prevents immune aging via ZIP-10/bZIP–mediated feedforward loop. Journal of Cell Biology, 2021, 220, .	2.3	18
59	PQM-1 controls hypoxic survival via regulation of lipid metabolism. Nature Communications, 2020, 11, 4627.	5.8	16
60	Novel elasticity measurements reveal C.Âelegans cuticle stiffens with age and in a long-lived mutant. Biophysical Journal, 2022, 121, 515-524.	0.2	13
61	Using whole-genome transcriptional analyses to identify molecular mechanisms of aging. Drug Discovery Today Disease Mechanisms, 2006, 3, 41-46.	0.8	11
62	Nervous system-wide profiling of presynaptic mRNAs reveals regulators of associative memory. Scientific Reports, 2019, 9, 20314.	1.6	11
63	Oleic Acid Protects Caenorhabditis Mothers From Mating-Induced Death and the Cost of Reproduction. Frontiers in Cell and Developmental Biology, 2021, 9, 690373.	1.8	11
64	Mitochondrial hyperactivity as a potential therapeutic target in Parkinson's disease. Translational Medicine of Aging, 2020, 4, 117-120.	0.6	8
65	Metabolic adaptation to hypoxia: do worms and cancer cells share common metabolic responses to hypoxic stress?. Cell Death and Differentiation, 2021, 28, 1434-1436.	5.0	8
66	DAF-16 and PQM-1: Partners in longevity. Aging, 2014, 6, 5-6.	1.4	6
67	<i>Ce</i> Aid: a smartphone application for logging and plotting <i>Caenorhabditis elegans</i> assays. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	5
68	Sex and death. Current Topics in Developmental Biology, 2021, 144, 353-375.	1.0	5
69	Genome Sequencing Fishes out Longevity Genes. Cell, 2015, 163, 1312-1313.	13.5	4
70	Protocol for transgenerational learned pathogen avoidance behavior assays in Caenorhabditis elegans. STAR Protocols, 2021, 2, 100384.	0.5	4
71	Transcriptional Profiling of C. elegans Adult Cells and Tissues with Age. Methods in Molecular Biology, 2020, 2144, 177-186.	0.4	4
72	A review of Genes that Act Downstream of the DAF-16 FOXO Transcription Factor to Influence the Life Span of C. Elegans., 2005,, 27-37.		3

#	Article	IF	CITATIONS
73	Aging: miRacles of Longevity?. Current Biology, 2010, 20, R1076-R1078.	1.8	3
74	For Longevity, Perception is Everything. Cell, 2015, 160, 807-809.	13.5	3
75	GAIT-GM integrative cross-omics analyses reveal cholinergic defects in a C. elegans model of Parkinson's disease. Scientific Reports, 2022, 12, 3268.	1.6	2
76	Coleen Murphy: How to stay young at heart, body, and mind. Journal of Cell Biology, 2012, 197, 342-343.	2.3	1
77	Feeding the germline. Genes and Development, 2016, 30, 249-250.	2.7	1
78	A PBX/MEIS Complex Balances Reproduction and Somatic Resilience. Developmental Cell, 2019, 49, 157-158.	3.1	1
79	Short and sweet. ELife, 2020, 9, .	2.8	1
80	Cell biology of disease and aging: a two-way street. Molecular Biology of the Cell, 2012, 23, 975-975.	0.9	0
81	Reproductive Ageing. Healthy Ageing and Longevity, 2017, , 137-162.	0.2	O
82	Being open to the unexpected. Molecular Biology of the Cell, 2019, 30, 2862-2864.	0.9	0
83	Gut feelings: microRNAs tune protein quality control and ageing to odours. Nature Metabolism, 2019, 1, 306-307.	5.1	0
84	Investigating Mechanisms that Control Ubiquitin-Mediated DAF-16/FOXO Protein Turnover. Methods in Molecular Biology, 2019, 1890, 41-49.	0.4	0