Marilyn A Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6346929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial host defence peptides: functions and clinical potential. Nature Reviews Drug Discovery, 2020, 19, 311-332.	21.5	762
2	Style self-incompatibility gene products of Nicotlana alata are ribonucleases. Nature, 1989, 342, 955-957.	13.7	734
3	Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature, 1986, 321, 38-44.	13.7	513
4	Biosynthesis and insecticidal properties of plant cyclotides: The cyclic knotted proteins from Oldenlandia affinis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10614-10619.	3.3	475
5	Defensins - Components of the Innate Immune System in Plants. Current Protein and Peptide Science, 2005, 6, 85-101.	0.7	401
6	Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature, 1990, 347, 757-760.	13.7	362
7	Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata Plant Cell, 1989, 1, 483-491.	3.1	230
8	Properties and mechanisms of action of naturally occurring antifungal peptides. Cellular and Molecular Life Sciences, 2013, 70, 3545-3570.	2.4	229
9	Isolation, Solution Structure, and Insecticidal Activity of Kalata B2, a Circular Protein with a Twist:Â Do Möbius Strips Exist in Nature?â€,‡. Biochemistry, 2005, 44, 851-860.	1.2	225
10	Solution structures by 1 H NMR of the novel cyclic trypsin inhibitor SFTI-1 from sunflower seeds and an acyclic permutant 1 1Edited by M. F. Summers. Journal of Molecular Biology, 2001, 311, 579-591.	2.0	220
11	Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors Plant Cell, 1993, 5, 203-213.	3.1	212
12	An Asparaginyl Endopeptidase Mediates in Vivo Protein Backbone Cyclization. Journal of Biological Chemistry, 2007, 282, 29721-29728.	1.6	207
13	Isolation and Properties of Floral Defensins from Ornamental Tobacco and Petunia. Plant Physiology, 2003, 131, 1283-1293.	2.3	202
14	Transforming growth factor(s) production enables cells to grow in the absence of serum: an autocrine system Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 485-489.	3.3	198
15	Self-incompatibility: a self-recognition system in plants. Science, 1990, 250, 937-941.	6.0	195
16	Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1221-1225.	3.3	194
17	The Plant Defensin, NaD1, Enters the Cytoplasm of Fusarium Oxysporum Hyphae. Journal of Biological Chemistry, 2008, 283, 14445-14452.	1.6	193
18	Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nature Communications, 2015, 6, 10199.	5.8	186

#	Article	IF	CITATIONS
19	A new substrate for investigating the specificity of \hat{I}^2 -glucan hydrolases. FEBS Letters, 1975, 52, 202-207.	1.3	180
20	Biosynthesis of circular proteins in plants. Plant Journal, 2008, 53, 505-515.	2.8	172
21	Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. ELife, 2014, 3, e01808.	2.8	167
22	The evolution, function and mechanisms of action for plant defensins. Seminars in Cell and Developmental Biology, 2019, 88, 107-118.	2.3	167
23	Permeabilization of Fungal Hyphae by the Plant Defensin NaD1 Occurs through a Cell Wall-dependent Process. Journal of Biological Chemistry, 2010, 285, 37513-37520.	1.6	162
24	Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6511-6514.	3.3	159
25	Convergent evolution of defensin sequence, structure and function. Cellular and Molecular Life Sciences, 2017, 74, 663-682.	2.4	152
26	Discovery of Cyclotides in the Fabaceae Plant Family Provides New Insights into the Cyclization, Evolution, and Distribution of Circular Proteins. ACS Chemical Biology, 2011, 6, 345-355.	1.6	151
27	Insecticidal plant cyclotides and related cystine knot toxins. Toxicon, 2007, 49, 561-575.	0.8	137
28	Gametophytic Self-Incompatibility Systems Plant Cell, 1993, 5, 1315-1324.	3.1	134
29	Action of the Style Product of the Self-Incompatibility Gene of Nicotiana alata (S-RNase) on in Vitro-Grown Pollen Tubes Plant Cell, 1991, 3, 271-283.	3.1	129
30	ENZYMATIC DETERMINATION OF 1,3:1,4-β-GLUCANS IN BARLEY GRAIN AND OTHER CEREALSâ€. Journal of the Institute of Brewing, 1978, 84, 233-239.	0.8	127
31	Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15011-15015.	3.3	127
32	A Pollen-Specific RALF from Tomato That Regulates Pollen Tube Elongation Â. Plant Physiology, 2010, 153, 703-715.	2.3	126
33	A style-specific hydroxyproline-rich glycoprotein with properties of both extensins and arabinogalactan proteins. Plant Journal, 1994, 6, 491-502.	2.8	125
34	The Three-dimensional Solution Structure of NaD1, a New Floral Defensin from Nicotiana alata and its Application to a Homology Model of the Crop Defense Protein alfAFP. Journal of Molecular Biology, 2003, 325, 175-188.	2.0	124
35	The Defensins Consist of Two Independent, Convergent Protein Superfamilies. Molecular Biology and Evolution, 2016, 33, 2345-2356.	3.5	123
36	Conserved Structural and Sequence Elements Implicated in the Processing of Gene-encoded Circular Proteins. Journal of Biological Chemistry, 2004, 279, 46858-46867.	1.6	122

#	Article	IF	CITATIONS
37	High-affinity Cyclic Peptide Matriptase Inhibitors. Journal of Biological Chemistry, 2013, 288, 13885-13896.	1.6	122
38	Plant defensins: Common fold, multiple functions. Fungal Biology Reviews, 2013, 26, 121-131.	1.9	121
39	A Novel Plant Protein-disulfide Isomerase Involved in the Oxidative Folding of Cystine Knot Defense Proteins. Journal of Biological Chemistry, 2007, 282, 20435-20446.	1.6	119
40	A style-specific 120-kDa glycoprotein enters pollen tubes ofNicotiana alata in vivo. Sexual Plant Reproduction, 1996, 9, 75-86.	2.2	115
41	Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling. Communications Biology, 2019, 2, 305.	2.0	106
42	ldentification and Mechanism of Action of the Plant Defensin NaD1 as a New Member of the Antifungal Drug Arsenal against Candida albicans. Antimicrobial Agents and Chemotherapy, 2013, 57, 3667-3675.	1.4	104
43	Molecular basis for the production of cyclic peptides by plant asparaginyl endopeptidases. Nature Communications, 2018, 9, 2411.	5.8	99
44	Transformation-deficient adenovirus mutant defective in expression of region 1A but not region 1B. Journal of Virology, 1982, 42, 106-113.	1.5	98
45	Style proteins of a wild tomato (Lycopersicon peruvianum) associated with expression of self-incompatibility. Planta, 1986, 169, 184-191.	1.6	96
46	Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. Journal of Experimental Botany, 2014, 65, 1541-1550.	2.4	96
47	Extracellular vesicles including exosomes in cross kingdom regulation: a viewpoint from plant-fungal interactions. Frontiers in Plant Science, 2015, 6, 766.	1.7	96
48	Novel insights on the mechanism of action of αâ€amylase inhibitors from the plant defensin family. Proteins: Structure, Function and Bioinformatics, 2008, 73, 719-729.	1.5	94
49	Proteinase inhibitors from Nicotiana alata enhance plant resistance to insect pests. Journal of Insect Physiology, 1997, 43, 833-842.	0.9	92
50	Extracellular Vesicles From the Cotton Pathogen Fusarium oxysporum f. sp. vasinfectum Induce a Phytotoxic Response in Plants. Frontiers in Plant Science, 2019, 10, 1610.	1.7	92
51	Structure of Petunia hybrida Defensin 1, a Novel Plant Defensin with Five Disulfide Bonds. Biochemistry, 2003, 42, 8214-8222.	1.2	90
52	Genetic polymorphism of self-incompatibility in flowering plants. Cell, 1989, 56, 255-262.	13.5	85
53	Self-compatibility in aLycopersicon peruvianum variant (LA2157) is associated with a lack of style S-RNase activity. Theoretical and Applied Genetics, 1994, 88, 859-864.	1.8	84
54	The Tomato Defensin TPP3 Binds Phosphatidylinositol (4,5)-Bisphosphate via a Conserved Dimeric Cationic Grip Conformation To Mediate Cell Lysis. Molecular and Cellular Biology, 2015, 35, 1964-1978.	1.1	84

#	Article	IF	CITATIONS
55	A High Proportion of Hybridomas Raised to a Plant Extract Secrete Antibody to Arabinose or Galactose. Plant Physiology, 1984, 75, 1013-1016.	2.3	81
56	Circular proteins and mechanisms of cyclization. Biopolymers, 2010, 94, 573-583.	1.2	79
57	Extracellular peptidases of the cereal pathogen Fusarium graminearum. Frontiers in Plant Science, 2015, 6, 962.	1.7	78
58	Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins. Cellular and Molecular Life Sciences, 2014, 71, 2651-2666.	2.4	76
59	Chemical synthesis and biosynthesis of the cyclotide family of circular proteins. IUBMB Life, 2006, 58, 515-524.	1.5	75
60	Dimerization of Plant Defensin NaD1 Enhances Its Antifungal Activity. Journal of Biological Chemistry, 2012, 287, 19961-19972.	1.6	71
61	Discovery of Cyclotide-Like Protein Sequences in Graminaceous Crop Plants: Ancestral Precursors of Circular Proteins?. Plant Cell, 2006, 18, 2134-2144.	3.1	70
62	Fungal Extracellular Vesicles with a Focus on Proteomic Analysis. Proteomics, 2019, 19, e1800232.	1.3	65
63	Molecular basis for the resistance of an insect chymotrypsin to a potato type II proteinase inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15016-15021.	3.3	63
64	Molecular characterisation of a cDNA sequence encoding the backbone of a style-specific 120 kDa glycoprotein which has features of both extensins and arabinogalactan proteins. Plant Molecular Biology, 1997, 35, 833-845.	2.0	59
65	Title is missing!. Molecular Breeding, 1999, 5, 357-365.	1.0	56
66	ldentification and Characterization of a Prevacuolar Compartment in Stigmas of Nicotiana alata. Plant Cell, 1999, 11, 1499-1508.	3.1	54
67	Co-expression of a cyclizing asparaginyl endopeptidase enables efficient production of cyclic peptides in planta. Journal of Experimental Botany, 2018, 69, 633-641.	2.4	53
68	S-RNase gene of Nicotiana alata is expressed in developing pollen Plant Cell, 1993, 5, 1771-1782.	3.1	52
69	The plant defensin NaD1 introduces membrane disorder through a specific interaction with the lipid, phosphatidylinositol 4,5 bisphosphate. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1099-1109.	1.4	52
70	A novel two-chain proteinase inhibitor generated by circularization of a multidomain precursor protein. Nature Structural Biology, 1999, 6, 526-530.	9.7	51
71	Evolutionary Origins of a Bioactive Peptide Buried within Preproalbumin Â. Plant Cell, 2014, 26, 981-995.	3.1	51
72	Nicotiana alata Defensin Chimeras Reveal Differences in the Mechanism of Fungal and Tumor Cell Killing and an Enhanced Antifungal Variant. Antimicrobial Agents and Chemotherapy, 2016, 60, 6302-6312.	1.4	51

#	Article	IF	CITATIONS
73	Characterization of the Protease Processing Sites in a Multidomain Proteinase Inhibitor Precursor from Nicotiana Alata. FEBS Journal, 1995, 230, 250-257.	0.2	51
74	The C-terminal propeptide of a plant defensin confers cytoprotective and subcellular targeting functions. BMC Plant Biology, 2014, 14, 41.	1.6	50
75	X-ray structure of a carpet-like antimicrobial defensin–phospholipid membrane disruption complex. Nature Communications, 2018, 9, 1962.	5.8	50
76	Molecular basis of cell recognition during fertilization in higher plants. Journal of Cell Science, 1985, 1985, 261-285.	1.2	48
77	Inhibition of cereal rust fungi by both class <scp>I</scp> and <scp>II</scp> defensins derived from the flowers of <i><scp>N</scp>icotiana alata</i> . Molecular Plant Pathology, 2014, 15, 67-79.	2.0	48
78	A Comparison of Nonthreaded, Enhanced Threaded, and Ellis Fixation Pins Used in Type I External Skeletal Fixators in Dogs. Veterinary Surgery, 1993, 22, 482-489.	0.5	47
79	A suite of kinetically superior AEP ligases can cyclise an intrinsically disordered protein. Scientific Reports, 2019, 9, 10820.	1.6	47
80	Hydrolysis of α-d-glucans and α-d-gluco-oligosaccharides by cladosporium resinae glucoamylases. Carbohydrate Research, 1980, 86, 77-96.	1.1	45
81	Salt-Tolerant Antifungal and Antibacterial Activities of the Corn Defensin ZmD32. Frontiers in Microbiology, 2019, 10, 795.	1.5	45
82	Protein markers for <i>Candida albicans</i> EVs include claudinâ€like Sur7 family proteins. Journal of Extracellular Vesicles, 2020, 9, 1750810.	5.5	45
83	A proteinase inhibitor from Nicotiana alata inhibits the normal development of light-brown apple moth, Epiphyas postvittana in transgenic apple plants. Plant Cell Reports, 2007, 26, 773-782.	2.8	43
84	Gametophytic Self-Incompatibility Systems. Plant Cell, 1993, 5, 1315.	3.1	42
85	Sequence Variability of Three Alleles of the Self-Incompatibility Gene of Nicotiana alata. Plant Cell, 1989, 1, 483.	3.1	41
86	Structures of a Series of 6-kDa Trypsin Inhibitors Isolated from the Stigma of Nicotiana alata. Biochemistry, 1995, 34, 14304-14311.	1.2	41
87	Subcellular targeting and biosynthesis of cyclotides in plant cells. American Journal of Botany, 2011, 98, 2018-2026.	0.8	40
88	Molecular Aspects of Fertilization in Flowering Plants. Annual Review of Cell Biology, 1988, 4, 209-228.	26.0	39
89	Insights into Processing and Cyclization Events Associated with Biosynthesis of the Cyclic Peptide Kalata B1. Journal of Biological Chemistry, 2012, 287, 28037-28046.	1.6	39
90	A radiochemical approach to the determination of carboxylic acid groups in polysaccharides. Carbohydrate Polymers, 1985, 5, 115-129.	5.1	38

#	Article	IF	CITATIONS
91	Agp2p, the Plasma Membrane Transregulator of Polyamine Uptake, Regulates the Antifungal Activities of the Plant Defensin NaD1 and Other Cationic Peptides. Antimicrobial Agents and Chemotherapy, 2014, 58, 2688-2698.	1.4	38
92	Pest and disease protection conferred by expression of barley Î ² - hordothionin and Nicotiana alata proteinase inhibitor genes in transgenic tobacco. Functional Plant Biology, 2005, 32, 35.	1.1	37
93	Action of the Style Product of the Self-Incompatibility Gene of Nicotiana alata (S-RNase) on in Vitro-Grown Pollen Tubes. Plant Cell, 1991, 3, 271.	3.1	36
94	The Three-dimensional Solution Structure by 1H NMR of a 6-Kda Proteinase Inhibitor Isolated from the Stigma of Nicotiana alata. Journal of Molecular Biology, 1994, 242, 231-243.	2.0	36
95	A relic S-RNase is expressed in the styles of self-compatibleNicotiana sylvestris. Plant Journal, 1998, 16, 591-599.	2.8	36
96	Identification of a novel four-domain member of the proteinase inhibitor II family from the stigmas of Nicotiana alata. Plant Molecular Biology, 2000, 42, 329-333.	2.0	33
97	Phosphorylation of style S-RNases by Ca2+-dependent protein kinases from pollen tubes. Sexual Plant Reproduction, 1996, 9, 25.	2.2	32
98	Synthesis and Structure Determination by NMR of a Putative Vacuolar Targeting Peptide and Model of a Proteinase Inhibitor fromNicotiana alataâ€,â€−. Biochemistry, 1996, 35, 369-378.	1.2	30
99	Immuno-gold localization of ?-L-arabinofuranosyl residues in pollen tubes of Nicotiana alata Link et otto. Planta, 1987, 171, 438-442.	1.6	29
100	A radish seed antifungal peptide with a high amyloid fibril-forming propensity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1615-1623.	1.1	29
101	A quantitative map of protein sequence space for the cis-defensin superfamily. Bioinformatics, 2019, 35, 743-752.	1.8	27
102	The impact of ingested potato type II inhibitors on the production of the major serine proteases in the gut of Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 2013, 43, 197-208.	1.2	26
103	Extracellular Vesicles from Fusarium graminearum Contain Protein Effectors Expressed during Infection of Corn. Journal of Fungi (Basel, Switzerland), 2021, 7, 977.	1.5	26
104	Subcellular distribution of arabinogalactan proteins in pollen grains and tubes as revealed with a monoclonal antibody raised against stylar arabinogalactan proteins. Protoplasma, 1999, 206, 105-117.	1.0	25
105	Bovine pancreatic trypsin inhibitor is a new antifungal peptide that inhibits cellular magnesium uptake. Molecular Microbiology, 2014, 92, 1188-1197.	1.2	25
106	Arabinogalactan-proteins are localized extracellularly in the transmitting tissue of Nicotiana alata link and otto, an ornamental tobacco. Micron and Microscopica Acta, 1985, 16, 247-254.	0.2	24
107	Rapid and Scalable Plant-Based Production of a Potent Plasmin Inhibitor Peptide. Frontiers in Plant Science, 2019, 10, 602.	1.7	24
108	The Plant Defensin NaD1 Enters the Cytoplasm of Candida albicans via Endocytosis. Journal of Fungi (Basel, Switzerland), 2018, 4, 20.	1.5	23

#	Article	IF	CITATIONS
109	Characterization of the Protease Processing Sites in a Multidomain Proteinase Inhibitor Precursor from Nicotiana Alata. FEBS Journal, 1995, 230, 250-257.	0.2	21
110	Structure of a putative ancestral protein encoded by a single sequence repeat from a multidomain proteinase inhibitor gene fromNicotiana alata. Structure, 1999, 7, 793-802.	1.6	21
111	Quantitative analysis of backbone-cyclised peptides in plants. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 872, 107-114.	1.2	21
112	The solution structure of C1-T1, a two-domain proteinase inhibitor derived from a circular precursor protein from Nicotiana alata11Edited by P. E. Wright. Journal of Molecular Biology, 2001, 306, 69-79.	2.0	20
113	An Enzyme-Linked Immunosorbent Assay (ELISA) for in Vitro Pollen Growth Based on Binding of a Monoclonal Antibody to the Pollen Tube Surface. Plant Physiology, 1987, 84, 851-855.	2.3	19
114	Structural homology guided alignment of cysteine rich proteins. SpringerPlus, 2016, 5, 27.	1.2	19
115	Sizeâ€exclusion chromatography allows the isolation of EVs from the filamentous fungal plant pathogen <i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i> (Fov). Proteomics, 2021, 21, e2000240.	1.3	18
116	Selective Removal of Individual Disulfide Bonds within a Potato Type II Serine Proteinase Inhibitor from Nicotiana alata Reveals Differential Stabilization of the Reactive-Site Loop. Journal of Molecular Biology, 2010, 395, 609-626.	2.0	17
117	A Centipede Toxin Family Defines an Ancient Class of CSαβ Defensins. Structure, 2019, 27, 315-326.e7.	1.6	17
118	Molecular genetics of self-incompatibility in flowering plants. Genesis, 1988, 9, 1-12.	3.1	15
119	Bacitracin significantly reduces degradation of peptides in plant cell cultures. , 1997, 53, 226-231.		15
120	Discovery and structures of the cyclotides: novel macrocyclic peptides from plants. International Journal of Peptide Research and Therapeutics, 2001, 8, 119-128.	0.1	14
121	Enzymic degradation of chemically modified extracellular polysaccharides from Rhizobia. Carbohydrate Research, 1978, 61, 479-492.	1.1	12
122	Synergistic Activity between Two Antifungal Proteins, the Plant Defensin NaD1 and the Bovine Pancreatic Trypsin Inhibitor. MSphere, 2017, 2, .	1.3	12
123	Uncoating the mechanisms of vacuolar protein transport. Trends in Plant Science, 1999, 4, 46-48.	4.3	11
124	Dual location of a family of proteinase inhibitors within the stigmas of Nicotiana alata. Planta, 2007, 225, 1265-1276.	1.6	11
125	Circular Micro-Proteins and Mechanisms of Cyclization. Current Pharmaceutical Design, 2011, 17, 4318-4328.	0.9	11
126	Resistance to the Plant Defensin NaD1 Features Modifications to the Cell Wall and Osmo-Regulation Pathways of Yeast. Frontiers in Microbiology, 2018, 9, 1648.	1.5	11

#	Article	IF	CITATIONS
127	Antibacterial and antifungal activity of defensins from the Australian paralysis tick, Ixodes holocyclus. Ticks and Tick-borne Diseases, 2019, 10, 101269.	1.1	11
128	Structural Refinement of Insecticidal Plant Proteinase Inhibitors from Nicotiana alata. Protein and Peptide Letters, 2008, 15, 903-909.	0.4	10
129	Biosynthesis of Cyclotides. Advances in Botanical Research, 2015, 76, 227-269.	0.5	10
130	Selfâ€incompatibility: insights through microscopy. Journal of Microscopy, 1992, 166, 137-148.	0.8	9
131	Discovery and structures of the cyclotides: novel macrocyclic peptides from plants. International Journal of Peptide Research and Therapeutics, 2001, 8, 119-128.	0.1	9
132	S-RNase Gene of Nicotiana alata Is Expressed in Developing Pollen. Plant Cell, 1993, 5, 1771.	3.1	8
133	Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi. International Journal of Molecular Sciences, 2016, 17, 1473.	1.8	8
134	The Nâ€ŧerminal proâ€domain of the kalata B1 cyclotide precursor is intrinsically unstructured. Biopolymers, 2016, 106, 825-833.	1.2	8
135	The interaction with fungal cell wall polysaccharides determines the salt tolerance of antifungal plant defensins. Cell Surface, 2019, 5, 100026.	1.5	8
136	Ptychographic imaging of NaD1 induced yeast cell death. Biomedical Optics Express, 2019, 10, 4964.	1.5	8
137	Circular Permutation of the Native Enzyme-Mediated Cyclization Position in Cyclotides. ACS Chemical Biology, 2020, 15, 962-969.	1.6	7
138	A style-specific 120-kDa glycoprotein enters pollen tubes of Nicotiana alata in vivo. Sexual Plant Reproduction, 1996, 9, 75-86.	2.2	7
139	Recent developments in the molecular genetics and biology of self-incompatibility. Plant Molecular Biology, 1989, 13, 267-271.	2.0	6
140	Histidine-Rich Defensins from the Solanaceae and Brasicaceae Are Antifungal and Metal Binding Proteins. Journal of Fungi (Basel, Switzerland), 2020, 6, 145.	1.5	6
141	Reply: The Role of BP-80 in Sorting to the Vacuole in Stigmas. Plant Cell, 1999, 11, 2071-2073.	3.1	5
142	Fungal Extracellular Vesicles in Pathophysiology. Sub-Cellular Biochemistry, 2021, 97, 151-177.	1.0	5
143	Molecular Genetics and Biology of Self-Incompatibility in Nicotiana alata, an Ornamental Tobacco. Functional Plant Biology, 1990, 17, 345.	1.1	5
144	Screening the <i>Saccharomyces cerevisiae</i> Nonessential Gene Deletion Library Reveals Diverse Mechanisms of Action for Antifungal Plant Defensins. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	4

#	Article	IF	CITATIONS
145	Improving the Digestibility of Plant Defensins to Meet Regulatory Requirements for Transgene Products in Crop Protection. Frontiers in Plant Science, 2020, 11, 1227.	1.7	4
146	Molecular and structural features of the pistil of Nicotiana alata. Biochemical Society Symposia, 1994, 60, 15-26.	2.7	4
147	Proteinase Inhibitors in Nicotiana alata Stigmas Are Derived from a Precursor Protein Which Is Processed into Five Homologous Inhibitors. Plant Cell, 1993, 5, 203.	3.1	3
148	In Vitro and In Planta Cyclization of Target Peptides Using an Asparaginyl Endopeptidase from Oldenlandia affinis. Methods in Molecular Biology, 2019, 2012, 211-235.	0.4	3
149	Gametophytic self-incompatibility in Nicotiana alata. Advances in Cellular and Molecular Biology of Plants, 1994, , 5-18.	0.2	2
150	Enzyme Mechanism and Function of a Novel Plant PDI Involved in the Oxidative Folding of Cystine Knot Defense Peptides. Advances in Experimental Medicine and Biology, 2009, 611, 31-32.	0.8	2
151	Examination of the Interaction between a Membrane Active Peptide and Artificial Bilayers by Dual Polarisation Interferometry. Bio-protocol, 2017, 7, e2087.	0.2	2
152	Molecular and evolutionary aspects of self-incompatibility in flowering plants. Symposia of the Society for Experimental Biology, 1991, 45, 245-69.	0.0	2
153	Self-Incompatibility as a Model for Cell-Cell Recognition in Flowering Plants. , 1991, , 527-536.		1
154	Reply: The Role of BP-80 in Sorting to the Vacuole in Stigmas. Plant Cell, 1999, 11, 2071.	3.1	0
155	Identification and Characterization of a Prevacuolar Compartment in Stigmas of Nicotiana alata. Plant Cell, 1999, 11, 1499.	3.1	0
156	How I became a biochemist. IUBMB Life, 2010, 62, 531-534.	1.5	0
157	Complex Carbohydrates at the Interacting Surfaces during Pollen-Pistil Interactions in Nicotiana alata. , 1986, , 379-384.		0
158	Molecular Genetics of Self-incompatibility inNicotiana alata. , 1992, , 75-83.		0
159	A Centipede Toxin Family Defines a New Ancient Class of CSSS Defensins. SSRN Electronic Journal, 0, , .	0.4	0