Peter Makhov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6346913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL27 Signaling Serves as an Immunologic Checkpoint for Innate Cytotoxic Cells to Promote Hepatocellular Carcinoma. Cancer Discovery, 2022, 12, 1960-1983.	9.4	14
2	Musashi-2 (MSI2) regulates epidermal growth factor receptor (EGFR) expression and response to EGFR inhibitors in EGFR-mutated non-small cell lung cancer (NSCLC). Oncogenesis, 2021, 10, 29.	4.9	18
3	Poly(ADP)-Ribosylation Inhibition: A Promising Approach for Clear Cell Renal Cell Carcinoma Therapy. Cancers, 2021, 13, 4973.	3.7	10
4	CRISPR/Cas9 genome-wide loss-of-function screening identifies druggable cellular factors involved in sunitinib resistance in renal cell carcinoma. British Journal of Cancer, 2020, 123, 1749-1756.	6.4	13
5	IL-27 receptor-regulated stress myelopoiesis drives abdominal aortic aneurysm development. Nature Communications, 2019, 10, 5046.	12.8	32
6	Unexpected Activities in Regulating Ciliation Contribute to Off-target Effects of Targeted Drugs. Clinical Cancer Research, 2019, 25, 4179-4193.	7.0	18
7	Expression of total and phospho 4EBP1 in metastatic and non‑metastatic renal cell carcinoma. Oncology Letters, 2019, 17, 3910-3918.	1.8	2
8	The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death and Disease, 2018, 9, 374.	6.3	35
9	Resistance to Systemic Therapies in Clear Cell Renal Cell Carcinoma: Mechanisms and Management Strategies. Molecular Cancer Therapeutics, 2018, 17, 1355-1364.	4.1	280
10	LDL cholesterol counteracts the antitumour effect of tyrosine kinase inhibitors against renal cell carcinoma. British Journal of Cancer, 2017, 116, 1203-1207.	6.4	25
11	Testing PARP Inhibitors Using a Murine Xenograft Model. Methods in Molecular Biology, 2017, 1608, 313-320.	0.9	0
12	Piperlongumine and its analogs down-regulate expression of c-Met in renal cell carcinoma. Cancer Biology and Therapy, 2015, 16, 743-749.	3.4	37
13	Minor grove binding ligands disrupt PARP-1 activation pathways. Oncotarget, 2014, 5, 428-437.	1.8	22
14	Coâ€administration of piperine and docetaxel results in improved antiâ€ŧumor efficacy via inhibition of CYP3A4 activity. Prostate, 2012, 72, 661-667.	2.3	74
15	Interleukin-6: A Potential Biomarker of Resistance to Multitargeted Receptor Tyrosine Kinase Inhibitors in Castration-resistant Prostate Cancer. Urology, 2011, 78, 968.e7-968.e11.	1.0	21
16	Are all multi-targeted tyrosine kinase inhibitors created equal? An in vitro study of sunitinib and pazopanib in renal cell carcinoma cell lines. Canadian Journal of Urology, 2011, 18, 5819-25.	0.0	17
17	Transcriptional regulation of the major zinc uptake protein hZip1 in prostate cancer cells. Gene, 2009, 431, 39-46.	2.2	17
18	Overexpression of the Zinc Uptake Transporter hZIP1 Inhibits Nuclear Factor-κB and Reduces the Malignant Potential of Prostate Cancer Cells <i>In vitro</i> and <i>In vivo</i> . Clinical Cancer Research, 2008, 14, 5376-5384.	7.0	59

#	Article	IF	CITATIONS
19	Vitamin E succinate inhibits NF-l [®] B and prevents the development of a metastatic phenotype in prostate cancer cells: Implications for chemoprevention. Prostate, 2007, 67, 582-590.	2.3	52