Li-Chiu Chang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6346812/li-chiu-chang-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

47
papers

2,446
citations

29
h-index

48
g-index

48
ext. papers

6
avg, IF

L-index

#	Paper	IF	Citations
47	Real-time image-based air quality estimation by deep learning neural networks <i>Journal of Environmental Management</i> , 2022 , 307, 114560	7.9	O
46	Deep neural networks for spatiotemporal PM forecasts based on atmospheric chemical transport model output and monitoring data <i>Environmental Pollution</i> , 2022 , 119348	9.3	0
45	A Combined O/U-Tube Oscillatory Water Tunnel for Fluid Flow and Sediment Transport Studies: The Hydrodynamics and Genetic Algorithm. <i>Water (Switzerland)</i> , 2022 , 14, 1767	3	
44	Explore training self-organizing map methods for clustering high-dimensional flood inundation maps. <i>Journal of Hydrology</i> , 2021 , 595, 125655	6	3
43	Explore Regional PM2.5 Features and Compositions Causing Health Effects in Taiwan. <i>Environmental Management</i> , 2021 , 67, 176-191	3.1	11
42	Explore spatio-temporal PM2.5 features in northern Taiwan using machine learning techniques. <i>Science of the Total Environment</i> , 2020 , 736, 139656	10.2	23
41	Seamless integration of convolutional and back-propagation neural networks for regional multi-step-ahead PM2.5 forecasting. <i>Journal of Cleaner Production</i> , 2020 , 261, 121285	10.3	35
40	Self-organizing maps of typhoon tracks allow for flood forecasts up to two days in advance. <i>Nature Communications</i> , 2020 , 11, 1983	17.4	17
39	Explore a Multivariate Bayesian Uncertainty Processor driven by artificial neural networks for probabilistic PM forecasting. <i>Science of the Total Environment</i> , 2020 , 711, 134792	10.2	12
38	Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus. <i>Applied Energy</i> , 2019 , 238, 668-682	10.7	30
37	AI-based design of urban stormwater detention facilities accounting for carryover storage. <i>Journal of Hydrology</i> , 2019 , 575, 1111-1122	6	4
36	Building an Intelligent Hydroinformatics Integration Platform for Regional Flood Inundation Warning Systems. <i>Water (Switzerland)</i> , 2019 , 11, 9	3	25
35	Modeling and Investigating the Mechanisms of Groundwater Level Variation in the Jhuoshui River Basin of Central Taiwan. <i>Water (Switzerland)</i> , 2019 , 11, 1554	3	3
34	Multi-output support vector machine for regional multi-step-ahead PM forecasting. <i>Science of the Total Environment</i> , 2019 , 651, 230-240	10.2	69
33	Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. <i>Journal of Cleaner Production</i> , 2019 , 209, 134-145	10.3	112
32	Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps. <i>Journal of Hydrology</i> , 2018 , 556, 131-142	6	39
31	Building ANN-Based Regional Multi-Step-Ahead Flood Inundation Forecast Models. <i>Water</i> (Switzerland), 2018 , 10, 1283	3	53

(2007-2017)

30	Conservation of groundwater from over-exploitation-Scientific analyses for groundwater resources management. <i>Science of the Total Environment</i> , 2017 , 598, 828-838	10.2	24
29	Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. <i>Science of the Total Environment</i> , 2016 , 562, 228-236	10.2	17
28	Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. <i>Journal of Hydrology</i> , 2016 , 541, 965-976	6	80
27	AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands. <i>Journal of Hydrology</i> , 2015 , 530, 634-644	6	57
26	Investigating the interactive mechanisms between surface water and groundwater over the Jhuoshuei river basin in central Taiwan. <i>Paddy and Water Environment</i> , 2014 , 12, 365-377	1.6	8
25	Regional flood inundation nowcast using hybrid SOM and dynamic neural networks. <i>Journal of Hydrology</i> , 2014 , 519, 476-489	6	59
24	Reinforced recurrent neural networks for multi-step-ahead flood forecasts. <i>Journal of Hydrology</i> , 2013 , 497, 71-79	6	86
23	Reinforced two-step-ahead weight adjustment technique for online training of recurrent neural networks. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2012 , 23, 1269-78	10.3	41
22	Multi-tier interactive genetic algorithms for the optimization of long-term reservoir operation. <i>Advances in Water Resources</i> , 2011 , 34, 1343-1351	4.7	41
21	Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network. <i>Journal of Hydrology</i> , 2010 , 384, 118-129	6	67
20	Clustering-based hybrid inundation model for forecasting flood inundation depths. <i>Journal of Hydrology</i> , 2010 , 385, 257-268	6	53
19	Constrained genetic algorithms for optimizing multi-use reservoir operation. <i>Journal of Hydrology</i> , 2010 , 390, 66-74	6	104
18	Forecasting of ozone episode days by cost-sensitive neural network methods. <i>Science of the Total Environment</i> , 2009 , 407, 2124-35	10.2	39
17	Multi-objective evolutionary algorithm for operating parallel reservoir system. <i>Journal of Hydrology</i> , 2009 , 377, 12-20	6	113
16	Auto-configuring radial basis function networks for chaotic time series and flood forecasting. <i>Hydrological Processes</i> , 2009 , 23, 2450-2459	3.3	25
15	Counterpropagation fuzzy-neural network for city flood control system. <i>Journal of Hydrology</i> , 2008 , 358, 24-34	6	35
14	Guiding rational reservoir flood operation using penalty-type genetic algorithm. <i>Journal of Hydrology</i> , 2008 , 354, 65-74	6	75
13	Enforced self-organizing map neural networks for river flood forecasting. <i>Hydrological Processes</i> , 2007 , 21, 741-749	3.3	46

12	Using a hybrid genetic algorithm imulated annealing algorithm for fuzzy programming of reservoir operation. <i>Hydrological Processes</i> , 2007 , 21, 3162-3172	3.3	37
11	Multi-step-ahead neural networks for flood forecasting. <i>Hydrological Sciences Journal</i> , 2007 , 52, 114-1.	30 3.5	96
10	The strategy of building a flood forecast model by neuro-fuzzy network. <i>Hydrological Processes</i> , 2006 , 20, 1525-1540	3.3	96
9	Reply to Comment on Comparison of static-feedforward and dynamic feedback neural networks for rainfall-runoff modeling by Y.M. Chiang, L.C. Chang, and F.J. Chang, 2004. Journal of Hydrology 290, 297 B11 Dournal of Hydrology, 2005, 314, 204-206	6	1
8	Fuzzy exemplar-based inference system for flood forecasting. Water Resources Research, 2005, 41,	5.4	21
7	Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves. <i>Hydrological Processes</i> , 2005 , 19, 1431-1444	3.3	77
6	Optimizing the reservoir operating rule curves by genetic algorithms. <i>Hydrological Processes</i> , 2005 , 19, 2277-2289	3.3	195
5	A two-step-ahead recurrent neural network for stream-flow forecasting. <i>Hydrological Processes</i> , 2004 , 18, 81-92	3.3	67
4	Comparison of static-feedforward and dynamic-feedback neural networks for rainfallEunoff modeling. <i>Journal of Hydrology</i> , 2004 , 290, 297-311	6	162
3	Real-time recurrent learning neural network for stream-flow forecasting. <i>Hydrological Processes</i> , 2002 , 16, 2577-2588	3.3	98
2	An efficient parallel algorithm for LISSOM neural network. Parallel Computing, 2002, 28, 1611-1633	1	6
1	Intelligent control for modelling of real-time reservoir operation. <i>Hydrological Processes</i> , 2001 , 15, 162	1-1634	183