Frédéric Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6346238/publications.pdf

Version: 2024-02-01

66 papers

2,555 citations

236925 25 h-index 50 g-index

67 all docs

67 docs citations

67 times ranked

1832 citing authors

#	Article	IF	CITATIONS
1	Organometallic molecular wires and other nanoscale-sized devices. Coordination Chemistry Reviews, 1998, 178-180, 431-509.	18.8	587
2	Bonding and Substituent Effects in Electron-Rich Mononuclear Ruthenium If -Arylacetylides of the Formula $[(\hat{i}\cdot 2\text{-dppe})(\hat{i}\cdot 5\text{-C5Me5})Ru(Ca^{\circ}C)-1,4\text{-}(C6H4)X][PF6]n (n = 0, 1; X = NO2, CN, F, H, OMe, NH2). Organometallics, 2006, 25, 649-665.$	2.3	137
3	Di-organoiron Mixed Valent Complexes Featuring "(η2-dppe)(η5-C5Me5)Fe―Endgroups: Smooth Class-III to Class-II Transition Induced by Successive Insertion of 1,4-Phenylene Units in a Butadiyne-Diyl Bridge. Journal of the American Chemical Society, 2006, 128, 2463-2476.	13.7	133
4	Electron-Rich Piano-Stool Iron Ïf-Acetylides Bearing a Functional Aryl Group. Synthesis and Characterization of Iron(II) and Iron(III) Complexesâ€. Organometallics, 2000, 19, 4240-4251.	2.3	129
5	Electron-Rich Piano-Stool Iron Ïf-Acetylides. Electronic Structures of Arylalkynyl Iron(III) Radical Cationsâ€. Organometallics, 2005, 24, 5464-5478.	2.3	109
6	Group 8 metal alkynyl complexes for nonlinear optics. Journal of Organometallic Chemistry, 2014, 751, 181-200.	1.8	74
7	Iron Alkynyl Helicenes: Redoxâ€Triggered Chiroptical Tuning in the IR and Nearâ€IR Spectral Regions and Suitable for Telecommunications Applications. Angewandte Chemie - International Edition, 2016, 55, 8062-8066.	13.8	71
8	Third-Order Nonlinear Optical Properties of Some Electron-Rich Iron Mono- and Trinuclear Alkynyl Complexes. Organometallics, 2005, 24, 4280-4288.	2.3	70
9	Bonding and Electron Delocalization in Ruthenium(III) $\ddot{l}f$ -Arylacetylide Radicals [trans-Cl(\hat{l} -2-dppe)2RuC \hat{a} % $_{\dot{l}}$ C(4-C6H4X)]+ (X = NO2, C(O)H, C(O)Me, F, H, OMe, NMe2): Misleading Aspects of the ESR Anisotropy. Organometallics, 2009, 28, 2253-2266.	2.3	69
10	Electron-rich Fe(ii) and Fe(iii) organoiron $leta$ f-alkynyl complexes bearing a functional aryl group. Vibrational spectroscopic investigations of the substituent effect on the C $leta$ F,C triple bond. Dalton Transactions RSC, 2002, , 1783.	2.3	66
11	Electronâ∈Rich Iron/Ruthenium Arylalkynyl Complexes for Thirdâ∈Order Nonlinear Optics: Redoxâ∈Switching between Three States. Chemistry - A European Journal, 2011, 17, 5561-5577.	3.3	64
12	Spin Delocalization in Electron-Rich Iron(III) Piano-Stool Ïf-Acetylides. An Experimental (NMR) and Theoretical (DFT) Investigation. Organometallics, 2007, 26, 874-896.	2.3	60
13	Palladium(0)-Catalyzed Trimerization of Arylisocyanates into 1,3,5-Triarylisocyanurates in the Presence of Diimines:Â A Nonintuitive Mechanism. Journal of the American Chemical Society, 2007, 129, 7294-7304.	13.7	58
14	Silicon Surfaceâ€Bound Redoxâ€Active Conjugated Wires Derived From Mono―and Dinuclear Iron(II) and Ruthenium(II) Oligo(phenyleneethynylene) Complexes. Advanced Materials, 2008, 20, 1952-1956.	21.0	54
15	Intramolecular Optical Electron Transfer in Mixed-Valent Dinuclear Ironâ^'Ruthenium Complexes Featuring a 1,4-Diethynylaryl Spacer. Organometallics, 2008, 27, 1063-1072.	2.3	53
16	Topological Dependence of the Magnetic Exchange Coupling in Arylethynyl-Bridged Organometallic Diradicals Containing [(η2-dppe)(η5-C5Me5)FellI]+ Fragments. Inorganic Chemistry, 2009, 48, 10608-10624.	4.0	45
17	Versatile reactions of a para-bromophenylacetylide iron(II) derivative and X-ray structure of the fluoro analogue Journal of Organometallic Chemistry, 2003, 670, 108-122.	1.8	44
18	Synthesis, characterization and unusual near-infrared luminescence of 1,1,4,4-tetracyanobutadiene derivatives. Chemical Communications, 2020, 56, 3571-3574.	4.1	44

#	Article	IF	Citations
19	Multistate Redox-Active Metalated Triarylamines. European Journal of Inorganic Chemistry, 2012, 2012, 65-75.	2.0	41
20	Linear Optical and Thirdâ€Order Nonlinear Optical Properties of Some Fluorenyl―and Triarylamineâ€Containing Tetracyanobutadiene Derivatives. Chemistry - A European Journal, 2016, 22, 10155-10167.	3.3	35
21	Redox-Active Molecular Wires Derived from Dinuclear Ferrocenyl/Ruthenium(II) Alkynyl Complexes: Covalent Attachment to Hydrogen-Terminated Silicon Surfaces. Journal of Physical Chemistry C, 2014, 118, 3680-3695.	3.1	33
22	Cubic nonlinear optical properties of new zinc tetraphenyl porphyrins peripherally functionalized with electron-rich Ru(II) alkynyl substituents. Tetrahedron, 2012, 68, 10351-10359.	1.9	31
23	Triarylâ€1,3,5â€triazinaneâ€2,4,6â€triones (Isocyanurates) Peripherally Functionalized by Donor Groups: Synthesis and Study of Their Linear and Nonlinear Optical Properties. Chemistry - A European Journal, 2012, 18, 11811-11827.	3.3	31
24	1,1,4,4-Tetracyanobutadiene-Functionalized Anthracenes: Regioselectivity of Cycloadditions in the Synthesis of Small Near-IR Dyes. Organic Letters, 2021, 23, 2007-2012.	4.6	30
25	Synthesis and Characterization of New Conjugated Fluorenylâ€Porphyrin Dendrimers for Optics. Chemistry - A European Journal, 2016, 22, 5583-5597.	3.3	29
26	Solid-state characterisation of the [(η2-dppe)(η5-C5Me5)FeCO]+ cation: an unexpected †oxidation†product of the [(η2-dppe)(η5-C5Me5)FeC≡C(C6H4)NMe2]+ radical cation. Comptes Rendus Chimie, 2005, 8, 1174-118	5 0.5 35.	24
27	Synthesis of new luminescent supramolecular assemblies from fluorenyl porphyrins and polypyridyl isocyanurate-based spacers. Tetrahedron, 2012, 68, 98-105.	1.9	24
28	2,7-Fluorenediyl-Bridged Complexes Containing Electroactive "Fe(η ⁵ -C ₅ Me ₅)(κ ² -dppe)C≡C–―End Groups: Mole Wires and Remarkable Nonlinear Electrochromes. Organometallics, 2015, 34, 5418-5437.	c ula r	23
29	New Conjugated <i>meso</i> â€Tetrafluorenylporphyrinâ€Cored Derivatives as Fluorescent Twoâ€Photon Photosensitizers for Singlet Oxygen Generation. Chemistry - A European Journal, 2017, 23, 2635-2647.	3.3	23
30	Enhanced two-photon absorption cross-sections of zinc(II) tetraphenylporphyrins peripherally substituted with d6-metal alkynyl complexes. New Journal of Chemistry, 2012, 36, 2192.	2.8	22
31	Donor-substituted triaryl-1,3,5-triazinanes-2,4,6-triones: octupolar NLO-phores with a remarkable transparency–nonlinearity trade-off. New Journal of Chemistry, 2011, 35, 2409.	2.8	21
32	Biocompatible conjugated fluorenylporphyrins for two-photon photodynamic therapy and fluorescence imaging. Chemical Communications, 2019, 55, 12231-12234.	4.1	21
33	Dendritic molecular assemblies for singlet oxygen generation: meso-tetraphenylporphyrin-based biphotonic sensitizers with remarkable luminescence. New Journal of Chemistry, 2015, 39, 7730-7733.	2.8	19
34	Iron and Ruthenium Alkynyl Complexes with 2â€Fluorenyl Groups: Some Linear and Nonlinear Optical Absorption Properties. European Journal of Inorganic Chemistry, 2016, 2016, 3868-3882.	2.0	19
35	New conjugated meso-tetrathienylporphyrin-cored derivatives as two-photon photosensitizers for singlet oxygen generation. Dyes and Pigments, 2018, 153, 248-255.	3.7	19
36	A zinc(II) tetraphenylporphyrin peripherally functionalized with redox-active "trans-[(η5-C5H5)Fe(η5-C5H4)C C](κ2-dppe)2Ru(C C)-―substituents: Linear electrochromism and third-orde nonlinear optics. Polyhedron, 2015, 86, 64-70.	r 2.2	18

#	Article	IF	CITATIONS
37	Linear and Third-Order Nonlinear Optical Properties of Fe(Î- ⁵ -dppe)- and <i>tip-fe(Î-⁵-C₅Me₅)(κ²-dppe)- and <i>trans</i>Fe(Î-²-dppe)₂-Alkynyl Complexes Containing 2-Fluorenyl End Groups. Organometallics, 2018, 37, 2245-2262.</i>	2.3	17
38	New donor–acceptor conjugates based on a trifluorenylporphyrin linked to a redox–switchable ruthenium unit. Dalton Transactions, 2015, 44, 9470-9485.	3.3	16
39	New porphyrin dendrimers with fluorenyl-based connectors: a simple way to improving the optical properties over dendrimers featuring 1,3,5-phenylene connectors. New Journal of Chemistry, 2020, 44, 4144-4157.	2.8	15
40	Nonlinear optical properties of meso-Tetra(fluorenyl)porphyrins peripherally functionalized with one to four ruthenium alkynyl substituents. Dyes and Pigments, 2021, 188, 109155.	3.7	15
41	Triaryl-1,3,5-triazinane-2,4,6-triones functionalized with electron-rich Fe(ii) and Ru(ii) acetylide complexes: new organometallic octupoles with large hyperpolarizabilities. Dalton Transactions, 2012, 41, 7454.	3.3	13
42	Linear and Thirdâ€Order Nonlinear Optical Properties of Triazobenzeneâ€1,3,5â€triazinaneâ€2,4,6â€trione (Isocyanurate) Derivatives. ChemPlusChem, 2017, 82, 1372-1383.	2.8	13
43	Phthalocyanine-Cored Fluorophores with Fluorene-Containing Peripheral Two-Photon Antennae as Photosensitizers for Singlet Oxygen Generation. Molecules, 2020, 25, 239.	3.8	13
44	Probing Charge-Transfer Excited States in a Quasi-Nonluminescent Electron-Rich Fe(II)–Acetylide Complex by Femtosecond Optical Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 3719-3727.	3.1	12
45	Optical electron transfer through 2,7-diethynylfluorene spacers in mixed-valent complexes containing electron-rich "(î·2-dppe)(î·5-C5Me5)Fe―endgroups. Dalton Transactions, 2011, 40, 6616.	3.3	11
46	New porphyrin-based dendrimers with alkene linked fluorenyl antennae for optics. New Journal of Chemistry, 2018, 42, 395-401.	2.8	11
47	Two-photon absorption properties of multipolar triarylamino/tosylamido 1,1,4,4-tetracyanobutadienes. Physical Chemistry Chemical Physics, 2021, 23, 22283-22297.	2.8	11
48	Synthesis and Photophysical Properties of 1,1,4,4â€Tetracyanobutadienes Derived from Ynamides Bearing Fluorophores**. Chemistry - A European Journal, 2022, 28, .	3.3	10
49	Synthesis, characterization and third-order nonlinear optical properties of a dodecaruthenium organometallic dendrimer with a zinc(<scp>ii</scp>) tetraphenylporphyrin core. Dalton Transactions, 2018, 47, 11123-11135.	3.3	8
50	Impact of Changing the Core in Tetrapyrrolic Dendrimers Designed for Oxygen Sensitization: New Fluorescent Phthalocyanine-Based Dendrimers with High Two-Photon Absorption Cross-sections. Macromolecules, 2021, 54, 6726-6744.	4.8	7
51	Biocompatible fluorenylphthalocyanines for one- and two-photon photodynamic therapy and fluorescence imaging. Dyes and Pigments, 2022, 197, 109840.	3.7	7
52	A hybrid ruthenium alkynyl/zinc porphyrin "Cross Fourchée―with large cubic NLO properties. Dalton Transactions, 2015, 44, 7748-7751.	3.3	6
53	DFT study of two-photon absorption of octupolar molecules. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	5
54	Fluorenylporphyrins functionalized by electrochromic ruthenium units as redox-triggered fluorescence switches. Dalton Transactions, 2019, 48, 11897-11911.	3.3	5

#	Article	IF	CITATIONS
55	Triarylisocyanurateâ€Based Fluorescent Twoâ€Photon Absorbers. ChemPlusChem, 2020, 85, 411-425.	2.8	5
56	Diphenylamino-substituted tristyryl <i>vs.</i> triphenyl isocyanurates: improved conjugation has minimal impact on two-photon absorption. New Journal of Chemistry, 2018, 42, 11289-11293.	2.8	4
57	Nitro End Groups: Remarkable Vibrational Reporters for Charge Transfer in the Excited States of Oligo(<i>p</i> -phenyleneethynylene)-Bridged Donor–Acceptor Dyads. Journal of Physical Chemistry C, 2020, 124, 9755-9764.	3.1	4
58	[Fp*Fc][PF6]: A remarkable non-symmetric dinuclear cation in a very stable mixed-valent state. Journal of Organometallic Chemistry, 2017, 847, 218-223.	1.8	3
59	Two-photon absorption of dipolar and quadrupolar oligothiophene-cored chromophore derivatives containing terminal dimesitylboryl moieties: a theoretical (DFT) structure–property investigation. New Journal of Chemistry, 2021, 45, 15074-15081.	2.8	3
60	Encapsulation of Hydrophobic Porphyrins into Biocompatible Nanoparticles: An Easy Way to Benefit of Their Two-Photon Phototherapeutic Effect without Hydrophilic Functionalization. Cancers, 2022, 14, 2358.	3.7	3
61	1,3,5-Triaryl-1,3,5-Triazinane-2,4,6-Trithiones: Synthesis, Electronic Structure and Linear Optical Properties. Molecules, 2020, 25, 5475.	3.8	2
62	Synthesis, characterization and optical properties of new tetrafluorenyl-porphyrins peripherally functionalized with conjugated 2-fluorenone groups. New Journal of Chemistry, 2021, 45, 15053-15062.	2.8	2
63	Electronic Absorption, Emission and Twoâ€Photon Absorption Properties of Some Functional 1,3,5â€Triphenylbenzenes. ChemistrySelect, 2017, 2, 8080-8085.	1.5	1
64	Synthesis of new star-like triply ferrocenylated compounds. Inorganica Chimica Acta, 2019, 486, 95-100.	2.4	1
65	New fluorescent tetraphenylporphyrin-based dendrimers with alkene-linked fluorenyl antennae designed for oxygen sensitization. Comptes Rendus Chimie, 2021, 24, 57-70.	0.5	1
66	Electronic Absorption, Emission, and Two-Photon Absorption Properties of Some Extended 2,4,6-Triphenyl-1,3,5-Triazines. Photochem, 2022, 2, 326-344.	2.2	0